Giải Toán 7 Bài 31: Quan hệ giữa góc và cạnh đối diện trong một tam giác sách Kết nối tri thức bao gồm lời giải và đáp án chi tiết cho từng bài tập trong SGK Toán 7 tập 2 chương trình sách mới. Lời giải Toán 7 được trình bày chi tiết, dễ hiểu, giúp các em học sinh ôn tập, củng cố kiến thức được học, từ đó luyện giải Toán 7 hiệu quả. Sau đây mời các bạn tham khảo chi tiết.

Mở đầu trang 59 Toán 7 tập 2 KNTT

Trong trận bóng đá, trái bóng đang ở vị trí D, ba cầu thủ đứng thẳng hàng tại vị trí A, B, C trên sân với số áo lần lượt là 4, 2, 3 như Hình 9.1. Theo em, cầu thủ nào gần trái bóng nhất, cầu thủ nào xa trái bóng nhất? Tại sao? (Biết rằng góc ACD là góc tù).

Trong trận bóng đá, trái bóng đang ở vị trí D, ba cầu thủ đứng thẳng hàng

Hướng dẫn giải

Xét ∆ABD có góc ABD là góc tù nên góc ABD là góc lớn nhất trong tam giác.

Khi đó AD > BD.

Xét ∆BCD có góc BCD là góc tù nên góc BCD là góc lớn nhất trong tam giác.

Khi đó BD > CD.

Do đó AD > BD > CD.

Vậy cầu thủ mang áo số 4 xa trái bóng nhất.

HĐ2 trang 60 Toán 7 tập 2 KNTT

Em hãy vẽ một tam giác ABC có AB = 3 cm, AC = 5 cm. Quan sát hình vừa vẽ và dự đoán xem trong hai góc B và C, góc nào lớn hơn.

Hướng dẫn giải

Em hãy vẽ một tam giác ABC có AB = 3 cm, AC = 5 cm

Dự đoán góc B lớn hơn góc C.

HĐ3 trang 61 Toán 7 tập 2 KNTT

Quan sát tam giác ABC trong Hình 9.4a.

Quan sát tam giác ABC trong Hình 9.4a

Em hãy dự đoán xem giữa hai cạnh đối diện với hai góc B và C (tức là cạnh AC và AB) thì cạnh nào lớn hơn.

Hướng dẫn giải

Cạnh đối diện với góc B là cạnh AC.

Cạnh đối diện với góc C là cạnh AB.

Dự đoán AC > AB.

HĐ4 trang 61 Toán 7 tập 2 KNTT

Quan sát tam giác ABC trong Hình 9.4a.

Quan sát tam giác ABC trong Hình 9.4a

Em hãy đo độ dài hai cạnh AC và AB để kiểm tra lại dự đoán của mình trong HĐ3.

Hướng dẫn giải

Sử dụng thước đo độ dài, đo được AB = 3,3 cm; AC = 4,6 cm.

Do đó AC > AB.

Bài 9.1 trang 62 Toán 7 tập 2 KNTT

Cho tam giác ABC có widehat{A} = 105°, widehat{B} = 35°

a) Tam giác ABC là tam giác gì ?

b) Tìm cạnh lớn nhất của tam giác ABC

Hướng dẫn giải:

a) Ta có widehat{A} = 105°. Suy ra 90° < widehat{A} < 180°, widehat{A} là góc tù. Tam giác ABC là tam giác tù.

Bài 9.1

b) Số đo góc widehat{C} là: 180°- (105° + 35°) = 180° - 140° = 40°

Vậy trong tam giác ABC ta cówidehat{A} > widehat{C} > widehat{B}

Theo định lý ta có, BC > AB > AC

Vậy BC chính là cạnh lớn nhất của tam giác ABC.

Bài 9.2 trang 62 Toán 7 tập 2 KNTT

Trong hình 9.6 có hai đoạn thẳng BC và DC bằng nhau, D nằm giữa A và C. Hỏi, kết luận nào trong các kết luận sau là đúng ? Tại sao

a) widehat{A}= widehat{B}

b) widehat{A}> widehat{B}

c) widehat{A}< widehat{B}

Bài 9.2

Hướng dẫn giải:

Theo hình ta có AC = AD + DC

Bài 9.3 trang 62 Toán 7 tập 2 KNTT

Trong tam giác cân có một góc bằng 96°, hỏi cạnh lớn nhất của tam giác cân đó là cạnh bên hay cạnh đáy? Vì sao?

Hướng dẫn giải:

Tam giác cân có 1 góc bằng 96°. Ta gọi góc đó là widehat{A}. 90° < 96°<180°.

Vậy suy ra widehat{A} là góc tù, widehat{A} lớn nhất trong tam giác cân ABC

Một tam giác chỉ có một góc tù, góc tù widehat{A} lớn nhất . Suy ra widehat{A} là góc ở đỉnh tam giác cân

Theo định lý, ta có cạnh lớn nhất của tam giác cân đó là cạnh đáy.

Bài 9.4 trang 62 Toán 7 tập 2 KNTT

Ba bạn Mai, Việt, Hà đi đến trường tại địa điểm D lần lượt theo 3 con đường AD, BD, CD (H.9.7). Biết rằng ba điểm A,B,C cùng nằm trên một đường thẳng, B nằm giữa A và C, widehat{ACD} là góc tù. Hỏi bạn nào đi xa nhất, bạn nào đi gần nhất? Vì sao?

Bài 9.4

Hướng dẫn giải:

Ta có widehat{ACD} là góc tù. Vậy widehat{ACD} là góc lớn nhất trong tam giác ACD. Theo định lý, ta có AD là cạnh có độ dài lớn nhất tam giác ACD

Vậy Mai là người đi xa nhất.

B thuộc đường thẳng AC. Vậy widehat{BCD}= widehat{ACD}. Suy ra widehat{BCD} là góc tù của tam giác BCD. Vậy theo định lý, cạnh BD lớn hơn cạnh CD

Vậy Việt sẽ đi xa hơn Hà. Hà là người đi ngắn nhất.

Bài 9.5 trang 62 Toán 7 tập 2 KNTT

Ba địa điểm A,B,C là ba đỉnh của một tam giác ABC với widehat{A} tù, AC= 500m. Đặt một loa truyền thanh tại một điểm nằm giữa A và B thì tại C có thể nghe thấy tiếng loa không nếu bán kính để nghe rõ tiếng của loa là 500m?

Hướng dẫn giải:

Bài 9.5

Gọi điểm đặt loa truyền thanh là O. O thuộc đoạn AB nằm giữa A và B nên O là trung điểm của AB. OC chính là khoảng cách từ điểm đặt loa cho đến điểm C.

Ta có widehat{A} tù, suy ra widehat{OAC} là góc lớn nhất tam giác OAC. Theo định lý, ta có OC chính là cạnh có độ dài lớn nhất tam giác OAC.

Từ trên, suy ra OC > AC. Mà AC = 500m = bán kính để nghe rõ tiếng của loa đặt ở điểm O. Ta có OC> bán kính để nghe rõ tiếng loa.

Kết luận: tại điểm C sẽ không thể nghe thấy tiếng loa.

…………………

Trên đây TaiLieuViet đã gửi tới các bạn tài liệu Giải Toán 7 Bài 31: Quan hệ giữa góc và cạnh đối diện trong một tam giác. Hy vọng đây là tài liệu hữu ích giúp các em nắm vững kiến thức được học, đồng thời luyện giải Toán 7 hiệu quả.

Ngoài tài liệu trên, mời các bạn tham khảo thêm tài liệu học tập lớp 7 khác như Ngữ văn 7 , Toán 7 và các Đề thi học kì 1 lớp 7 , Đề thi học kì 2 lớp 7 … được cập nhật liên tục trên TaiLieuViet.vn.

Toán 7 Bài 31: Quan hệ giữa góc và cạnh đối diện trong một tam giácBài tiếp theo: Giải Toán 7 Bài 32: Quan hệ giữa đường vuông góc và đường xiên.