TaiLieuViet.vn xin gửi tới bạn đọc bài viết Giải Toán 10 Bài 11: Tích vô hướng của hai vectơ KNTT. Mời bạn đọc cùng tham khảo chi tiết.

Bài 4.21 trang 70 SGK Toán 10 KNTT

Trong mặt phẳng tọa độ Oxy, hãy tính góc giữa hai vectơ overrightarrow aoverrightarrow b trong mỗi trường hợp sau:

a) overrightarrow a = ( - 3;1),;overrightarrow b = (2;6)

b) overrightarrow a = (3;1),;overrightarrow b = (2;4)

c) overrightarrow a = ( - sqrt 2 ;1),;overrightarrow b = (2; - sqrt 2 )

Gợi ý đáp án

a) overrightarrow a

Rightarrow overrightarrow a bot overrightarrow b hay left( {overrightarrow a ,overrightarrow b } right) = {90^o}.

b) left{ begin{array}{l}overrightarrow a .overrightarrow b = 3.2 + 1.4 = 10\|overrightarrow a |, = sqrt {{3^2} + {1^2}} = sqrt {10} ;;,|overrightarrow b |, = sqrt {{2^2} + {4^2}} = 2sqrt 5 end{array} right.

begin{array}{l} Rightarrow cos left( {overrightarrow a ,overrightarrow b } right) = frac{{10}}{{sqrt {10} .2sqrt 5 }} = frac{{sqrt 2 }}{2}\ Rightarrow left( {overrightarrow a ,overrightarrow b } right) = {45^o}end{array}

c) Dễ thấy: overrightarrow aoverrightarrow b cùng phương do frac{{ - sqrt 2 }}{2} = frac{1}{{ - sqrt 2 }}

Hơn nữa overrightarrow b

Do đó: overrightarrow aoverrightarrow b ngược hướng.

Rightarrow left( {overrightarrow a ,overrightarrow b } right) = {180^o}

Bài 4.22 trang 70 SGK Toán 10 KNTT

Tìm điều kiện của overrightarrow u ,;overrightarrow v để:

a) overrightarrow u .;overrightarrow v = left| {overrightarrow u } right|.;left| {overrightarrow v } right|

b) overrightarrow u .;overrightarrow v = - left| {overrightarrow u } right|.;left| {overrightarrow v } right|

Gợi ý đáp án

a) Ta có: overrightarrow u .;overrightarrow v = left| {overrightarrow u } right|.;left| {overrightarrow v } right|.cos left( {overrightarrow u ,;overrightarrow v } right) = left| {overrightarrow u } right|.;left| {overrightarrow v } right|

Rightarrow cos left( {overrightarrow u ,;overrightarrow v } right) = 1 Leftrightarrow left( {overrightarrow u ,;overrightarrow v } right) = {0^o}

Nói cách khác: overrightarrow u ,;overrightarrow v cùng hướng

b) Ta có overrightarrow u .;overrightarrow v = left| {overrightarrow u } right|.;left| {overrightarrow v } right|.cos left( {overrightarrow u ,;overrightarrow v } right) =- left| {overrightarrow u } right|.;left| {overrightarrow v } right|

Rightarrow cos left( {overrightarrow u ,;overrightarrow v } right) = - 1 Leftrightarrow left( {overrightarrow u ,;overrightarrow v } right) = {180^o}

Nói cách khác: overrightarrow u ,;overrightarrow v ngược hướng.

Bài 4.23 trang 70 SGK Toán 10 KNTT

Trong mặt phẳng tọa độ Oxy, cho hai điểm A (1; 2), B(-4; 3). Gọi M (t; 0) là một điểm thuộc trục hoành.

a) Tính overrightarrow {AM} .overrightarrow {BM} theo t

b) Tính t để widehat {AMB} = {90^o}

Gợi ý đáp án

a)

Để widehat {AMB} = {90^o} hay AM bot BM thì overrightarrow {AM} .overrightarrow {BM}

<=> t^{2} + 3t +2 = 0

<=> left{begin{matrix} t = -1 \ t = -2 end{matrix}right.

Vậy t = -1 hoặc t = -2 thì widehat {AMB} = {90^o}

Bài 4.24 trang 70 SGK Toán 10 KNTT

Trong mặt phẳng tọa độ Oxy, cho ba điểm không thẳng hàng A (-4; 1), B (2;4), C (2; -2)

a) Giải tam giác

b) Tìm tọa độ trực tâm H của tam giác ABC.

Gợi ý đáp án

a) Ta có:

left{ begin{array}{l}overrightarrow {AB} = (2 - ( - 4);4 - 1) = (6;3)\overrightarrow {BC} = (2 - 2; - 2 - 4) = (0; - 6)\overrightarrow {AC} = (2 - ( - 4); - 2 - 1) = (6; - 3)end{array} right. Rightarrow left{ begin{array}{l}AB = left| {overrightarrow {AB} } right| = sqrt {{6^2} + {3^2}} = 3sqrt 5 \BC = left| {overrightarrow {BC} } right| = sqrt {{0^2} + {{( - 6)}^2}} = 6\AC = left| {overrightarrow {CA} } right| = sqrt {{6^2} + {{( - 3)}^2}} = 3sqrt 5 .end{array} right.

Áp dụng định lí cosin cho tam giác ABC, ta có:

cos widehat A = frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = frac{{{{left( {3sqrt 5 } right)}^2} + {{left( {3sqrt 5 } right)}^2} - {{left( 6 right)}^2}}}{{2.3sqrt 5 .3sqrt 5 }} = frac{3}{5} Rightarrow widehat A approx 53,{13^o}

cos widehat B = frac{{{a^2} + {c^2} - {b^2}}}{{2ac}} = frac{{{{left( 6 right)}^2} + {{left( {3sqrt 5 } right)}^2} - {{left( {3sqrt 5 } right)}^2}}}{{2.6.3sqrt 5 }} = frac{{sqrt 5 }}{5} Rightarrow widehat B approx 63,{435^o}

Rightarrow widehat C approx 63,{435^o}

Vậy tam giác ABC có: a = 6;b = 3sqrt 5 ;c = 3sqrt 5 ; widehat A approx 53,{13^o};widehat B = widehat C approx 63,{435^o}.

b)

Gọi H có tọa độ (x; y)

Rightarrow left{ begin{array}{l}overrightarrow {AH} = (x - ( - 4);y - 1) = (x + 4;y - 1)\overrightarrow {BH} = (x - 2;y - 4)end{array} right.

Lại có: H là trực tâm tam giác ABC

Rightarrow AH bot BCBH bot AC

Rightarrow left( {overrightarrow {AH} ,overrightarrow {BC} } right) = {90^o} Leftrightarrow cos left( {overrightarrow {AH} ,overrightarrow {BC} } right) = 0left( {overrightarrow {BH} ,overrightarrow {AC} } right) = {90^o} Leftrightarrow cos left( {overrightarrow {BH} ,overrightarrow {AC} } right) = 0

Do đó: overrightarrow {AH} .overrightarrow {BC} = overrightarrow 0 và overrightarrow {BH} .overrightarrow {AC} = overrightarrow 0 .

Mà: overrightarrow {BC} = (0; - 6)

Rightarrow (x + 4).0 + (y - 1).( - 6) = 0 Leftrightarrow - 6.(y - 1) = 0 Leftrightarrow y = 1.

overrightarrow {AC} = (6; - 3)

begin{array}{l} Rightarrow (x - 2).6 + (y - 4).( - 3) = 0\ Leftrightarrow 6x - 12 + ( - 3).( - 3) = 0\ Leftrightarrow 6x - 3 = 0\ Leftrightarrow x = frac{1}{2}.end{array}

Vậy H có tọa độ left( {1;frac{1}{2}} right)

Bài 4.25 trang 70 SGK Toán 10 KNTT

Chứng minh rằng với mọi tam giác ABC, ta có:{S_{ABC}} = frac{1}{2}sqrt {{{overrightarrow {AB} }^2}.{{overrightarrow {AC} }^2} - {{left( {overrightarrow {AB} .overrightarrow {AC} } right)}^2}} .

Gợi ý đáp án

Đặt A = dfrac{1}{2}sqrt {{{overrightarrow {AB} }^2}.{{overrightarrow {AC} }^2} - {{left( {overrightarrow {AB} .overrightarrow {AC} } right)}^2}}

begin{array}{l} Rightarrow A = dfrac{1}{2}sqrt {A{B^2}.A{C^2} - {{left( {AB.AC.cos A} right)}^2}} \ Leftrightarrow A = dfrac{1}{2}sqrt {A{B^2}.A{C^2}left( {1 - {{cos }^2}A} right)} end{array}

1 - {cos ^2}A = {sin ^2}A

Rightarrow A = dfrac{1}{2}sqrt {A{B^2}.A{C^2}.{{sin }^2}A}

Leftrightarrow A = dfrac{1}{2}.AB.AC.sin A (Vì {0^o} < widehat A < {180^o} nên sin A > 0)

Do đó A = {S_{ABC}} hay {S_{ABC}} = dfrac{1}{2}sqrt {{{overrightarrow {AB} }^2}.{{overrightarrow {AC} }^2} - {{left( {overrightarrow {AB} .overrightarrow {AC} } right)}^2}} .  (đpcm)

Bài 4.26 trang 70 SGK Toán 10 KNTT

Cho tam giác ABC có trọng tâm G. Chứng minh rằng với mọi điểm M, ta có:

M{A^2} + M{B^2} + M{C^2} = 3M{G^2} + G{A^2} + G{B^2} + G{C^2}

Gợi ý đáp án

Ta có:

begin{array}{l}M{A^2} + M{B^2} + M{C^2} = {overrightarrow {MA} ^2} + {overrightarrow {MB} ^2} + {overrightarrow {MC} ^2}\ = {left( {overrightarrow {MG} + overrightarrow {GA} } right)^2} + {left( {overrightarrow {MG} + overrightarrow {GB} } right)^2} + {left( {overrightarrow {MG} + overrightarrow {GC} } right)^2}\ = {overrightarrow {MG} ^2} + 2overrightarrow {MG} .overrightarrow {GA} + {overrightarrow {GA} ^2} + {overrightarrow {MG} ^2} + 2overrightarrow {MG} .overrightarrow {GB} + {overrightarrow {GB} ^2} + {overrightarrow {MG} ^2} + 2overrightarrow {MG} .overrightarrow {GC} + {overrightarrow {GC} ^2}\ = 3{overrightarrow {MG} ^2} + 2overrightarrow {MG} .left( {overrightarrow {GA} + overrightarrow {GB} + overrightarrow {GC} } right) + {overrightarrow {GA} ^2} + {overrightarrow {GB} ^2} + {overrightarrow {GC} ^2}\ = 3{overrightarrow {MG} ^2} + 2overrightarrow {MG} .overrightarrow 0 + {overrightarrow {GA} ^2} + {overrightarrow {GB} ^2} + {overrightarrow {GC} ^2}end{array}

(do G là trọng tâm tam giác ABC)

begin{array}{l} = 3{overrightarrow {MG} ^2} + {overrightarrow {GA} ^2} + {overrightarrow {GB} ^2} + {overrightarrow {GC} ^2}\ = 3M{G^2} + G{A^2} + G{B^2} + G{C^2}end{array} (đpcm).

Trên đây TaiLieuViet.vn vừa gửi tới bạn đọc bài viết Giải Toán 10 Bài 11: Tích vô hướng của hai vectơ KNTT. Hi vọng qua bài viết này bạn đọc có thêm nhiều tài liệu để học tập tốt hơn môn Toán 10 KNTT. Mời các bạn cùng tham khảo thêm tài liệu học tập các môn Ngữ văn 10 KNTT…