Chuyên đề Toán học lớp 10: Các dạng hệ phương trình đặc biệtđược TaiLieuViet sưu tầm và giới thiệu tới các bạn học sinh cùng quý thầy cô tham khảo. Nội dung tài liệu sẽ giúp các bạn học sinh học tốt môn Toán học lớp 10 hiệu quả hơn. Mời các bạn tham khảo.

I. Lý thuyết & Phương pháp giải

DẠNG TOÁN 1: HỆ GỒM MỘT PHƯƠNG TRÌNH BẬC NHẤT VÀ MỘT BẬC HAI

Phương pháp giải

Sử dụng phương pháp thế

– Từ phương trình bậc nhất rút một ẩn theo ẩn kia.

– Thế vào phương trình bậc hai để đưa về phương trình bậc hai một ẩn.

– Số nghiệm của hệ tùy theo số nghiệm của phương trình bậc hai này.

DẠNG TOÁN 2: HỆ PHƯƠNG TRÌNH ĐỐI XỨNG

1. Phương pháp giải

a. Hệ đối xứng loại 1

Hệ phương trình đối xứng loại 1 là hệ phương trình có dạng:

Chuyên đề toán 10

(Có nghĩa là khi ta hoán vị giữa x và y thì f(x, y) và g(x, y) không thay đổi).

Cách giải

– Đặt S = x + y, P = xy

– Đưa hệ phương trình (I) về hệ (I’) với các ẩn là S và P.

– Giải hệ (I’) ta tìm được S và P

– Tìm nghiệm (x; y) bằng cách giải phương trình: X2 – SX + P = 0

b. Hệ đối xứng loại 2

Hệ phương trình đối xứng loại 2 là hệ phương trình có dạng:

Chuyên đề toán 10

(Có nghĩa là khi hoán vị giữa x và y thì (1) biến thành (2) và ngược lại)

– Trừ (1) và (2) vế theo vế ta được: (II) ⇔ Chuyên đề toán 10

– Biến đổi (3) về phương trình tích: (3) ⇔ (x-y).g(x,y) = 0 ⇔ Chuyên đề toán 10

– Như vậy (II) ⇔ Chuyên đề toán 10

– Giải các hệ phương trình trên ta tìm được nghiệm của hệ (II)

c. Chú ý: Hệ phương trình đối xứng loại 1, 2 nếu có nghiệm là (x0; y0) thì (y0; x0) cũng là một nghiệm của nó

DẠNG TOÁN 3: HỆ PHƯƠNG TRÌNH ĐẲNG CẤP BẬC HAI

1. Phương pháp giải

Hệ phương trình đẳng cấp bậc hai là hệ phương trình có dạng:

Chuyên đề toán 10

II. Ví dụ minh họa

Bài 1: Giải hệ phương trình

Chuyên đề toán 10

Hướng dẫn:

a. Đặt S = x + y, P = xy (S2 – 4P ≥ 0)

Ta có: Chuyên đề toán 10

⇒S2 – 2(5-S) = 5 ⇒ S2 + 2S – 15 = 0

⇒ S = -5; S = 3

S = -5⇒ P = 10 (loại)

S = 3⇒ P = 2 (nhận)

Khi đó : x, y là nghiệm của phương trình X2 – 3X + 2 = 0

⇔ X = 1; X = 2

Vậy hệ có nghiệm (2; 1), (1; 2)

b. ĐKXĐ: x ≠ 0

Hệ phương trình tương đương với

Chuyên đề toán 10

Vậy hệ phương trình có nghiệm (x; y) là (1; 1) và (2; -3/2)

Bài 2:Giải hệ phương trình

Chuyên đề toán 10

Hướng dẫn:

a. Hệ phương trình tương đương

Chuyên đề toán 10

Với x-y = 4 ⇒ x = y + 4 ⇒ y(y+4) + y + 4 – y = -1

⇔ y2 + 4y + 5 = 0 (vn)

Vậy nghiệm của hệ phương trình là (x; y) = {(0; 1), (-1; 0)}

b. Đặt S = x+y; P = xy, ta có hệ:

Chuyên đề toán 10

– Với S = 2 + √2; P = 2√2 ta có x, y là nghiệm phương trình:

Chuyên đề toán 10

Với S = -4-√2; P = 6 + 4√2 ta có x, y là nghiệm phương trình:

X2 + (4+√2)X + 6 + 4√2 = 0 (vô nghiệm)

Vậy hệ có nghiệm (x; y) là (2; √2) và (√2; 2)

Bài 3:Giải hệ phương trình

Chuyên đề toán 10

Hướng dẫn:

a. Hệ phương trình tương đương

Chuyên đề toán 10

Vậy tập nghiệm của hệ phương trình là: (x; y) = {(0;0), (2;2)}

b. Trừ vế với vế của phương trình đầu và phương trình thứ hai ta được:

(y2 – x2 = x3 – y3 – 3(x2 – y2) + 2(x-y) ⇔ (x-y)(x2 + xy + y2 – 2x – 2y + 2) = 0 ⇔ 1/2(x-y)[x2 + y2 + (x + y – 2)2] = 0 ⇔ x = y)

(vì x2 + y2 + (x+y-2)2 > 0)

Thay x = y vào phương trình đầu ta được:

x3 – 4x2 + 2x = 0 ⇔ x(x2 – 4x + 2) = 0

Chuyên đề toán 10

Vậy hệ phương trình có ba nghiệm: (0; 0); (2+√2; 2+√2) và (2-√2; 2-√2)

Bài 4: Giải hệ phương trình

Chuyên đề toán 10

Hướng dẫn:

a. Ta có : x3 – 3x = y3 – 3y ⇔ (x-y)(x2 + xy + y2) – 3(x-y) = 0

⇔ (x-y)(x2 + xy + y2 – 3) = 0

Chuyên đề toán 10

Khi x = y thì hệ có nghiệm

Khi x2 + xy + y2 – 3 = 0 ⇔ x2 + y2 = 3 – xy, ta có x6 + y6 = 27

⇔ (x2 + y2)(x4 – x2y2 + y4) = 27

⇒ (3-xy)[(3-xy)2 – 3x2y2] = 27 ⇔ 3(xy)3 + 27xy = 0

Chuyên đề toán 10

Vậy hệ phương trình đã cho có 2 nghiệm

Chuyên đề toán 10

b. Hệ phương trình tương đương

Chuyên đề toán 10

Bài 5:Xác định m để hệ phương trìnhChuyên đề toán 10có nghiệm

Hướng dẫn:

Hệ phương trình tương đương

(x2 + y2 – 2xy) – (x + y – 4xy) = m + 1 – 2m ⇔ (x+y)2 – (x+y) + m – 1 = 0

Để hệ phương trình có nghiệm Δ ≥ 0 ⇔ 1 – 4(m-1) ≥ 0 ⇔ 5 – 4m ≥ 0

⇔ m ≤ 5/4

Từ phương trình thứ 2 ta có(x-y)2 = m + 1 ⇒ m + 1 ≥ 0 ⇔ m ≥ -1

Do đó -1 ≤ m ≤ 5/4

Với nội dung bài Các dạng phương trình đặc biệt trên đây chúng tôi xin giới thiệu tới các bạn học sinh cùng quý thầy cô nội dung cần nắm vững khái niệm, phương pháp giải các dạng phương trình đặc biệt…

Trên đây TaiLieuViet đã giới thiệu tới các bạn lý thuyết môn Toán học 10: Các dạng hệ phương trình đặc biệt. Để có kết quả cao hơn trong học tập, TaiLieuViet xin giới thiệu tới các bạn học sinh tài liệu Chuyên đề Toán học 10, Giải bài tập Toán lớp 10, Giải VBT Toán lớp 10 mà TaiLieuViet tổng hợp và giới thiệu tới các bạn đọc