tailieuviet.vn xin giới thiệu Bộ Đề thi vào lớp 10 môn Toán Hà Nội năm 2023 có đáp án. Mời các bạn đón xem:

Chỉ 100k mua trọn Bộ Đề thi vào lớp 10 môn Toán Hà Nội năm 2023 có đáp án bản word có lời giải chi tiết (chỉ 20k cho 1 đề thi bất kì):

B1: Gửi phí vào tài khoản 0711000255837 – NGUYEN THANH TUYEN – Ngân hàng Vietcombank

B2: Nhắn tin tới zalo Vietjack Official – nhấn vào đây để thông báo và nhận giáo án.

Xem thử tài liệu tại đây: Link tài liệu

Đề thi vào lớp 10 Toán Hà Nội năm 2022 – 2023 có đáp án (Đề 1)

Sở Giáo dục và Đào tạo TP Hà Nội

Kì thi tuyển sinh vào lớp 10

Môn thi: Toán (hệ Công lập)

Thời gian làm bài: 120 phút

Bài 1: (2 điểm) Cho biểu thức:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Với x ≥ 0, x ≠ 4, Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

a. Tính giá trị của A khi x = 9

b. Chứng minh Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

c. Tìm giá trị lớn nhất của biểu thức P = A.B

Bài 2: (2 điểm) Giải bài toán bằng cách lập phương trình hoặc hệ phương trình:

Một mảnh đất hình chữ nhật có chu vi bằng 46m. Nếu tăng chiều rộng thêm 4m và giảm chiều dài đi 20% chiều dài ban đầu thì mảnh đất đó trở thành hình vuông. Tính diện tích của mảnh vườn hình chữ nhật đó.

Bài 3: (2 điểm)

a) Giải hệ phương trình

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

b) Cho hệ phương trình:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Tìm m để hệ phương trình có nghiệm duy nhất (x; y) thỏa mãn x2 + y2 < 5.

Bài 4: (3,5 điểm) Cho điểm C nằm ngoài đường tròn (O), kẻ hai tiếp tuyến CA, CB với đường tròn (O) (A, B là tiếp điểm).

a) Chứng minh 4 điểm C, A, O, B cùng thuộc một đường tròn

b) Vẽ dây AD // CO. CD cắt (O) tại E. Gọi giao điểm AE với CO là F. Chứng minh ECF = CAF và CF2 = FE.FA

c) AB cắt CO tại H. Chứng minh ∠HEB = ∠CEF

d) Khi OC = 2R. Tính FO theo R.

Bài 5: (0,5 điểm) Giải phương trình sau:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Đáp án và Hướng dẫn giải

Bài 1:

a) Khi x =9 ta có:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Biểu thức P đạt GTLN khi và chỉ khi:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án đạt GTLN ⇔ √x + 3 đạt GTNN

⇔ √x = 0 ⇔ x = 0

Khi đó GTLN của P là:

Vậy GTLN của P là Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án đạt được khi x = 0

Bài 2:

Gọi chiều dài của hình chữ nhật là x (m) (0 < x < 23)

Gọi chiều rộng của hình chữ nhật là y (m) (0 < y < x < 23)

Chu vi hình chữ nhật là 46 m nên ta có phương trình

2(x + y) = 46 ⇔ x + y = 23

Nếu tăng chiều rộng 4m và giảm chiều dài đi 20% thì mảnh đất đó trở thành hình vuông nên ta có phương trình

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Ta có hệ phương trình:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Vậy chiều dài của hình chữ nhật là 15m

Chiều rộng của hình chữ nhật là 8m

Bài 3:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Đặt Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án (a ≠ 0), hệ phương trình trở thành:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Với a = 1, ta có:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án ⇔ √y – 2 = 1 ⇔ √y = 3 ⇔ y = 9

Vậy hệ phương trình có nghiệm (x; y) = (1; 9)

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Hệ phương trình có nghiệm duy nhất khi và chỉ khi m + 1 ≠ 0 ⇔ m ≠ -1

Khi đó:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Theo bài ra:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

⇔ 9m2 – 6m + 5 < 5m2 + 10m + 5

⇔ 4m2 – 16m < 0

⇔ 4m(m – 4) < 0

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Đối chiếu điều kiện, m ≠ -1 thỏa mãn

Vậy với 0 < m < 4 thì thỏa mãn yêu cầu đề bài.

Bài 4:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

a) Xét tứ giác CAOB có:

∠CAO = 90o (AC là tiếp tuyến của (O))

∠CBO = 90o (BC là tiếp tuyến của (O))

=> ∠CAO + ∠CBO = 180o

=> Tứ giác BCAO là tứ giác nội tiếp

b) Xét đường tròn (O) có:

∠CAF = ∠ADE (góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn 1 cung)

Lại có: ∠ECF = ∠ADE (CO // AD; hai góc so le trong)

=> ∠CAF = ∠ECF

Xét ΔCFA và ΔEFC có:

∠CAF = ∠ECF

∠CFA là góc chung

=> ΔCFA ∼ ΔEFC

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án => CF2 = FE.FA

c) Ta có:

∠CAF = ∠EBA (góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn 1 cung)

Lại có: ∠CAF = ∠ECF (cmt)

=> ∠EBA = ∠ECF

Xét tứ giác CEBH có:

∠EBA = ∠ECF

=> 2 đỉnh B và C cùng nhìn EH dưới 2 góc bằng nhau

=> Tứ giác CEBH là tứ giác nội tiếp

=> ∠BEH = ∠HCB ( 2 góc nội tiếp cùng chắn cung HB)

Mà ∠HCB = ∠HCA (CO là tia phân giác của góc ACB)

=> ∠BEH = ∠HCA (1)

Mặt khác: ΔCFA ∼ ΔEFC => ∠HCA = ∠CEF (2 góc tương ứng) (2)

Từ (1) và (2) : ∠BEH = ∠CEF

d) Xét tam giác ACO vuông tại A có:

AC2 + AO2 = CO2 => AC2 = 4R2 – R2 = 3R2

=> CB2 = CA2 = 3R2

Ta có: AB ⊥ CO (Tính chất 2 tiếp tuyến cắt nhau)

CO // AD (gt)

=> AB ⊥ AD => BD là đường kính của đường tròn (O)

Xét tam giác BCD vuông tại B có:

BC2 + BD2 = CD2 => CD2 = 3R2 + 4R2 = 7R2

=> CD = R√7

Xét ΔCEA và ΔCDA có:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Xét tam giác CAO vuông tại A có:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

=> ∠BOA = 2∠AOC = 120o => ∠AOD = 60o (kề bù với góc (BOA )

Tam giác AOD cân tại O có ∠AOD = 60o nên tam giác AOD đều

=> AD = AO = R

Ta có: OC // AD

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Bài 5:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Đặt Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án (a,b ≥ 0),phương trình trở thành:

2a2 + 3b2 = 5ab

⇔ 2a2 -2ab + 3b2 – 3ab = 0

⇔ (a – b)(2a – 3b) = 0

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Với a = b, ta có:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

⇔ x2 – 6x = x + 3

⇔ x2 – 7x – 3 = 0

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Với 2a = 3b, ta có:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

⇔ 4x2 – 24x = 9x + 27

⇔ 4x2 – 33x – 27 = 0

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Đối chiếu với ĐKXĐ thì phương trình có tập nghiệm là

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Đề thi vào lớp 10 Toán Hà Nội năm 2022 – 2023 có đáp án (Đề 2)

Sở Giáo dục và Đào tạo TP Hà Nội

Kì thi tuyển sinh vào lớp 10

Môn thi: Toán (hệ Công lập)

Thời gian làm bài: 120 phút

Bài 1: (2 điểm) Cho biểu thức:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

với x ≥ 0, x ≠ 9, x ≠ 4

a) Tính giá trị biểu thức A khi x = 3 – 2√2

b) Rút gọn biểu thức B

c) Tìm giá trị nhỏ nhất của biểu thức P = A : B

Bài 2: (2 điểm) Giải bài toán bằng cách lập phương trình hoặc hệ phương trình

Theo kế hoạch, một tổ công nhân phải làm một số sản phẩm trong một thời gian nhất định. Nếu mỗi ngày họ làm tăng thêm 5 sản phẩm so với dự định thì sẽ hoàn thành kế hoạch trước thời hạn 4 ngày. Nếu mỗi ngày họ làm ít hơn 5 sản phẩm so với dự định thì sẽ hoàn thành kế hoạch châm hơn thời hạn 5 ngày. Tính thời gian và số sản phẩm phải làm theo kế hoạch.

Bài 3: (2 điểm)

1) Giải phương trình 2x4 + x2 – 6 = 0

2) Cho parabol (P): y = x2 và đường thẳng (d): y = mx + 2

a) Với m = -1 : vẽ parabol (P) và đường thẳng (d) trên cùng một hệ trục tọa độ. Tìm tọa độ các giao điểm của parabol (P) và đường thẳng (d).

b) Tìm các giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 sao cho x1 – 2x2 = 5

Bài 4: (3,5 điểm) Cho đường tròn tâm (O) với dây AB cố định không phải đường kính. Gọi C là điểm thuộc cung lớn AB sao cho tam giác ABC nhọn. M; N lần lượt là điểm chính giữa của cung nhỏ AB; AC. Gọi I là giao điểm của BN và CM. Dây MN cắt AB và AC lần lượt tại H và K.

a) Chứng minh tứ giác BMHI nội tiếp

b) Chứng minh MK.MN = MI.MC

c) Chứng minh tứ giác AKI cân tại K và tứ giác AHIK là hình thoi.

Bài 5: (0,5 điểm) Cho a, b là 2 số thực dương thỏa mãn điều kiện ab + 4 ≤ 2b. Tìm giá trị lớn nhất của biểu thức:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Đáp án và Hướng dẫn giải

Bài 1:

a) Ta có x = 3 – 2√2 = 2 – 2√2.1 + 1 = (√2 – 1)2

⇒ √x = √(√2 – 1)2 = |√2 – 1| = √2 – 1 (vì √2 > 1)

Thay √x = √2 – 1 vào biểu thức A ta được:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Áp dụng Bất đẳng thức Cosi cho 2 số dương 1 + √x và Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Dấu bằng xảy ra khi:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

⇔ 1 + √x = √3 (do 1 + √x > 0)

⇔ √x = √3 – 1 ⇔ x = 4 – 2√3

Vậy GTNN của P là 2√3 – 4 đạt được khi x = 4 – 2√3

Bài 2:

Gọi số sản phẩm cần làm theo dự định trong một ngày là x (sản phẩm/ ngày) ( x > 5)

Thời gian dự định làm là y (ngày) (y > 4)

=> Số sản phẩm cần làm là xy ( sản phẩm)

Nếu mỗi ngày họ làm tăng thêm 5 sản phẩm so với dự định thì sẽ hoàn thành kế hoạch trước thời hạn 4 ngày nên ta có phương trình:

(x + 5)(y – 4) = xy ⇔ -4x + 5y = 20 (1)

Nếu mỗi ngày họ làm ít hơn 5 sản phẩm so với dự định thì sẽ hoàn thành kế hoạch châm hơn thời hạn 5 ngày nên ta có phương trình:

(x – 5)(y + 5) = xy ⇔ 5x – 5y = 25 (2)

Từ (1) và (2) ta có hệ phương trình:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Khi đó số sản phẩm cần làm là: x.y = 45.40 = 1800 (sản phẩm)

Vậy số sản phẩm cần làm là 1800 sản phẩm

Số ngày dự định làm là 40 ngày.

Bài 3:

1) 2x4 + x2 – 6 = 0

Đặt x2 = t ( t ≥ 0), phương trình trở thành:

2t2 + t – 6 = 0

Δ = 1-4.2.(-6) = 49

=> Phương trình có 2 nghiệm phân biệt

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Do t ≥ 0 nên t = Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Vậy phương trình đã cho có nghiệm Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

2) a) Với m = -1, (d): y = – x + 2

(P): y = x2

Bảng giá trị:

x -2 -1 0 1 2
y = x2 4 1 0 1 4

Đồ thị (P): y = x2 là 1 đường parabol nằm phía trên trục hoành, nhận trục Oy làm trục đối xứng và nhận điểm O (0;0) làm đỉnh

y = – x + 2

Bảng giá trị:

x 0 2
y = -x + 2 2 0

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Phương trình hoành độ giao điểm của (P) và (d) là:

x2 = -x + 2 ⇔ x2 + x – 2 = 0

=> Phương trình có 2 nghiệm x = 1; x = – 2

Khi đó tọa độ giao điểm của (P) và (d) là (1; 1) và (-2; 4)

b) Phương trình hoành độ giao điểm của (P) và (d) là:

x2 = mx + 2 ⇔ x2 – mx – 2 = 0

Δ = m2 – 4.(-2) = m2 + 8 > 0 ∀m

=> Phương trình luôn có 2 nghiệm phân biệt với mọi m

Theo hệ thức Vi-et ta có:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Theo bài ra: x1 – 2x2 = 5 ⇔ x1 = 2x2 + 5

=> (2x2 + 5) x2 = -2 ⇔ 2x22 + 5x2 + 2 = 0

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Vậy có 2 giá trị của m thỏa mãn điều kiện đề bài là m = -1 ; Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Bài 4:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

a) Xét tứ giác HMBI có:

∠HMI = ∠HBI (2 góc nội tiếp chắn 2 cung bằng nhau Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án)

Mà 2 góc này cùng nhìn cạnh HI

=> Tứ giác BMHI nội tiếp

b) Xét ΔMNI và ΔMKC có:

∠KMC là góc chung

∠MNI = ∠KCM (2 góc nội tiếp chắn 2 cung bằng nhau Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án)

=> ΔMNI ∼ ΔMCK => Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án => MN.MK = MC.MI

c) Xét tứ giác NKIC có:

∠KNI = ∠KCI (2 góc nội tiếp chắn 2 cung bằng nhau Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án)

Mà 2 góc này cùng nhìn cạnh KI

=> Tứ giác NKIC là tứ giác nội tiếp

=> ∠NKI + ∠NCI = 180o (1)

Xét đường tròn (O) có:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

=> ∠ANK + ∠NAK = ∠ACM + ∠NCA = ∠NCI (2)

Xét tam giác AKN có: ∠ANK + ∠NAK + ∠NKA = 180o (3)

Từ (1), (2), (3) => ∠NKI = ∠NKA

Xét tam giác IKN và tam giác AKN có:

∠NKI = ∠NKA

KN là cạnh chung

∠KNI = ∠KNA (2 góc nội tiếp chắn 2 cung bằng nhau)

=> ΔIKN = ΔAKN

=> IK=AK =>ΔAKI cân tại K

Tứ giác NKIC là tứ giác nội tiếp

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Mặt khác ∠KCN = ∠ABN (2 góc nội tiếp cùng chắn cung AN của (O))

∠BAC = ∠BNC (2 góc nội tiếp cùng chắc cung BC của (O))

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

=> Tứ giác AHIK là hình bình hành

Mà IK = AK

=> Tứ giác AHIK là hình thoi.

Bài 5:

2b ≥ ab + 4 ≥ 4√ab ( Theo BDT Cosi)

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Vậy GTLN của P là Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án khi Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án.

Đề thi vào lớp 10 Toán Hà Nội năm 2022 – 2023 có đáp án (Đề 3)

Sở Giáo dục và Đào tạo TP Hà Nội

Kì thi tuyển sinh vào lớp 10

Môn thi: Toán (hệ Công lập)

Thời gian làm bài: 120 phút

Bài 1: (2 điểm) Cho biểu thức

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

(ĐKXĐ: x ≥ 0; x ≠ 1; x ≠ 9 )

a) Tính giá trị của biểu thức M khi x = 9

b) Rút gọn biểu thức N

c) Tìm giá trị nhỏ nhất của biểu thức

Bài 2: (2 điểm) Giải bài toán bằng cách lập phương trình hoặc hệ phương trình

Hai người cùng làm chung một công việc trong 7 giờ 12 phút thì xong công việc. Nếu mỗi người làm một mình thì người thứ nhất hoàn thành công việc chậm hơn người thứ hai là 6 giờ. Hỏi nếu làm một mình thì mỗi người phải làm trong bao lâu để hoàn thành công việc.

Bài 3: (2 điểm)

1) Giải hệ phương trình

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

2) Cho phương trình x2 + (m + 2)x + 2m = 0 (*)

a) Chứng minh phương trình (*) luôn có hai nghiệm x1, x2 với mọi m

b) Tìm biểu thức liên hệ giữa x1, x2 không phụ thuộc vào m.

Bài 4: (3,5 điểm) Cho đường tròn (O; R), đường kính AB. Kẻ tiếp tuyến Ax với đường tròn tại A. Lấy điểm M thuộc tia Ax, kẻ tiếp tuyến MC với đường tròn (O) tại C (C khác A). Tiếp tuyến của đường tròn tại B cắt AC tại D và cắt MC tại F. Nối OM cắt AC tại E.

1) Chứng minh tứ giác OBDE nội tiếp

2) Chứng minh AC. AD = 4R2

3) Chứng minh AB là tiếp tuyến của đường tròn ngoại tiếp ΔMOF

Bài 5: (0,5 điểm) Giải phương trình:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Đáp án và Hướng dẫn giải

Bài 1:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Áp dụng Bất đẳng thức Cosi cho 2 số không âm √x + 3 và Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án ta được:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Dấu bằng xảy ra khi:

√x + 3 = Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án ⇔ (√x + 3)2 = 25 ⇔ √x + 3 = 5 (do √x + 3 > 0)

⇔ √x = 2 ⇔ x = 4

Vậy GTNN của P = 16, đạt được khi x = 4

Bài 2:

Đổi 7 giờ 12 phút = Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Gọi thời gian người thứ nhất làm một mình xong công việc là x (giờ) Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Thời gian người thứ hai làm một mình xong công việc là y (giờ) Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

=> Trong 1 giờ, người thứ nhất làm được Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án công việc

Trong 1 giờ, người thứ nhất làm được Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án công việc

Cả 2 người làm chung thì làm xong trong 7 giờ 12 phút nên ta có phương trình:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Người thứ nhất làm một mình hoàn thành công việc chậm hơn người thứ hai là 6 giờ nên ta có phương trình:

x – y = 6 (2)

Từ (1) và (2) ta có hệ phương trình

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Giải phương trình (*):

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Đối chiếu với ĐK thì y = 12 => x = y + 6 = 18

Vậy người thứ nhất làm 1 mình thì hoàn thành công việc trong 18 giờ

Người thứ hai làm 1 mình thì hoàn thành công việc trong 12 giờ.

Bài 3:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Khi đó hệ phương trình trở thành:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Vậy hệ phương trình đã cho có nghiệm duy nhất (x; y) = Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

2)x2 + (m + 2)x + 2m = 0 (*)

a)Δ = (m + 2)2 – 4.2m = m2 + 4m + 4 – 8m = (m – 2)2 ≥ 0 ∀m

=> phương trình (*) luôn có hai nghiệm x1, x2 với mọi m

b) Theo hệ thức Vi- ét, ta có:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

=> 2(x1 + x2 ) + x1.x2 = -2(m + 2) + 2m = -4

Vậy 2(x1 + x2 ) + x1.x2 = -4 là hệ thức liên hệ giữa 2 nghiệm x1, x2 không phụ thuộc vào m

Bài 4:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

a) M là giao điểm của 2 tiếp tuyến MC và MA

=> MO là đường trung trực của đoạn thẳng AC =>MO ⊥ AC

Xét tứ giác OBDE có:

∠OED = 90o (MO ⊥ AC)

∠OBD = 90o (BD là tiếp tuyến của (O))

=> ∠OED + ∠OBD = 180o

=> Tứ giác OBDE là tứ giác nội tiếp

b) Xét tam giác ABD vuông tại D có BC là đường cao

Theo hệ thức lượng trong tam giác vuông: AC.AD = AB2 = (2R)2 = 4R2

Vậy AC.AD = 4R2

c) 2 tiếp tuyến MC và Ma cắt nhau tại M

=> OM là tia phân giác của ∠COA => ∠COM = Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

2 tiếp tuyến CF và FB cắt nhau tại F

=> OF là tia phân giác của ∠COB => ∠COF = Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Khi đó:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Tam giác MOF vuông tại O

=> Tâm đường tròn ngoại tiếp tam giác MOF là trung điểm I của MF

Tam giác MIO cân tại I => ∠IOM = ∠IMO

Mặt khác ta có: ∠AMO = ∠IMO (do MO là tia phân giác ∠AMI )

=> ∠AMO = ∠IOM (1)

Tam giác MAO vuông tại A => ∠AMO + ∠AOM = 90o(2)

Từ (1) và (2) => ∠IOM + ∠AOM =90o ⇔ ∠AOI = 90o hay AO ⊥ OI

=> AB là tiếp tuyến của đường tròn ngoại tiếp tam giác MOF

Bài 5:

ĐKXĐ: x ≥ 2

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Khi đó, phương trình đã cho trở thành: a = – a2 + 2

⇔ a2 + a – 2 = 0

⇔ a = 1; a = -2

Do a < 0 nên a = – 2

Với a = -2, ta có:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Vậy phương trình có nghiệm x = 2

Đề thi vào lớp 10 Toán Hà Nội năm 2022 – 2023 có đáp án (Đề 4)

Sở Giáo dục và Đào tạo TP Hà Nội

Kì thi tuyển sinh vào lớp 10

Môn thi: Toán (hệ Công lập)

Thời gian làm bài: 120 phút

Bài 1: (2 điểm) Cho các biểu thức:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

với x ≥ 0; x ≠ 9

a) Rút gọn biểu thức P

b) Tìm x sao cho P = 3

c) Đặt M = P : Q. Tìm x để |M| < Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Bài 2: (2 điểm) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hai vòi nước cùng chảy vào một bể nước cạn (không có nước) trong 1 giờ 12 phút thì đầy bể. Nếu mở vòi thứ nhất chảy trong 30 phút và vòi thứ hai chảy trong 1 giờ thì được Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án bể. Hỏi mỗi vòi chảy một mình thì sau bao lâu đầy bể?

Bài 3: (2 điểm)

1) Giải hệ phương trình:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

2) Cho hai hàm số: y = 2x – 1 và y = Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án + 4

a) Tìm tọa độ giao điểm M của đồ thị hai hàm số trên

b) Gọi N, P lần lượt là giao điểm của hai đồ thị trên với trục Oy. Tính diện tích ΔMNP

Bài 4: (3,5 điểm) Cho đường tròn (O ; R) đường kính AB và điểm M bất kì thuộc đường tròn (M ≠ A, B) . Kẻ tiếp tuyến tại A của đường tròn, tiếp tuyến này cắt tia BM ở N. Tiếp tuyến của đường tròn tại M cắt AN ở D.

a) Chứng minh: 4 điểm A, D, M , O cùng thuộc một đường tròn

b) Chứng minh: OD // BM và suy ra D là trung điểm của AN

c) Đường thẳng kẻ qua O và vuông góc với BM cắt tia DM ở E. Chứng minh: BE là tiếp tuyến của đường tròn (O ; R)

d) Qua O kẻ đường thẳng vuông góc với AB và cắt đường thẳng BM tại I. Gọi giao điểm của AI và BD là J. Khi điểm M di động trên (O ; R) thì J chạy trên đường nào?

Bài 5: (0,5 điểm) Cho a > 0. Tìm giá trị nhỏ nhất của P = a2 + 4a + 15 + Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Đáp án và Hướng dẫn giải

Bài 1:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Vậy với Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án thì P = 3

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Vậy với mọi x thỏa mãn điều kiện x ≥ 0;x ≠ 9 thì |M| < Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Bài 2:

Đổi 1 giờ 12′ = Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Gọi thời gian vòi 1 chảy 1 mình đầy bể là x (h) Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Thời gian vòi 1 chảy 1 mình đầy bể là y (h) Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Trong 1h vòi thứ nhất chảy được Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án (bể nước)

Trong 1h vòi thứ hai chảy được Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án (bể nước)

=> Trong 1h cả hai vòi chảy được Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án (bể nước)

Do cả 2 vòi chảy trong 1 giờ 12 phút thì đầy bể nên ta có phương trình:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Nếu mở vòi thứ nhất chảy trong 30 phút và vòi thứ hai chảy trong 1 giờ thì được Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án bể nên ta có phương trình:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Ta có hệ phương trình:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Vậy vòi 1 chảy 1 mình trong 2 giờ thì đầy bể

Vòi 2 chảy 1 mình trong 3 giờ thì đầy bể.

Bài 3:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Vậy hệ phương trình có nghiệm (x; y) = (6; 8)

2) Tọa độ giao điểm của 2 đường thẳng là nghiệm của hệ phương trình:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Vậy tọa độ giao điểm của 2 đường thẳng trên là M (2; 3)

Gọi N là giao điểm của đường thẳng y = 2x – 1 với Oy => N (0; -1)

Gọi P là giao điểm của đường thẳng y = Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án + 4 với Oy => P (0; 4)

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Gọi E là hình chiếu vuông góc của M trên Oy

=> EM ⊥ PN; EM = 2

Ta có PN = |yP | + |yN| = 5

SPMN = Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp ánEM.PN = Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án .2.5 = 5 (đơn vị diện tích)

Bài 4:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

a) Xét tứ giác ADMO có:

∠DMO =90o (do M là tiếp tuyến của (O))

∠DAO =90o (do AD là tiếp tuyến của (O))

=> ∠DMO + ∠DAO = 180o

=> Tứ giác ADMO là tứ giác nội tiếp.

b) Do D là giao điểm của 2 tiếp tuyến DM và DA nên OD là tia phân giác của ∠AOM

=>(AOD = Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án∠AOM

Mặt khác ta có (ABM là góc nội tiếp chắn cung AM

=> ∠ABM = Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án∠AOM

=> ∠AOD = ∠ABM

Mà 2 góc này ở vị trí đồng vị

=> OD // BM

Xét tam giác ABN có:

OM// BM; O là trung điểm của AB

=> D là trung điểm của AN

c) Ta có: ΔOBM cân tại O; OE ⊥ MB => OE là đường trung trực của MB

=> EM = EB = > ΔMEB cân tại E => ∠EMB = ∠EBM (1)

ΔOBM cân tại O => ∠OMB = ∠OBM (2)

Cộng (1) và (2) vế với vế, ta được:

∠EMB + ∠OMB = ∠EBM + ∠OBM ⇔ ∠EMO =∠EBO ⇔ ∠EBO = 90o

=>OB ⊥ BE

Vậy BE là tiếp tuyến của (O).

d) Lấy điểm E trên tia OA sao cho OE = Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Xét tam giác ABI có OI vừa là đường cao vừa là trung tuyến

=> Tam giác ABI cân tại I => IA = IB; ∠IBA = ∠IAB

Ta có:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

=> ∠NAI = ∠INA => ΔINA cân tại I => IA = IN

Tam giác NAB vuông tại A có: IA = IN = IB

=> IA là trung tuyến của tam giác NAB

Xét ΔBNA có:

IA và BD là trung tuyến; IA ∩ BD = {J}

=> J là trọng tâm của tam giác BNA

Xét tam giác AIO có:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

=> J nằm trên đường thẳng d vuông góc với AB và cách O một khoảng bằng R/3.

Phần đảo: Lấy điểm J’ bất kì thuộc đường thẳng d

Do d// OI (cùng vuông góc AB) nên ta có:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

AI là trung tuyến của tam giác NAB

=> J’ là trọng tâm tam giác NAB

Vậy khi M di chuyển trên (O) thì J di chuyển trên đường thẳng d vuông góc với AB và cách O một khoảng là R/3.

Bài 5:

Với a > 0, ta có:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Đề thi vào lớp 10 Toán Hà Nội năm 2022 có đáp án

Sở Giáo dục và Đào tạo Hà Nội

Kì thi tuyển sinh vào lớp 10

Năm học 2022

Môn thi: Toán (hệ Công lập)

Thời gian làm bài: 120 phút

Bài I (2,0 điểm)

Cho hai biểu thức A=3⁢xx+2 và B=x+4x-4-2x-2 với x≥0,x≠4.

1) Tính giá trị của biểu thức A khi x=9.

2) Chứng minh B=xx+2.

3) Tìm số nguyên dương x lớn nhất thỏa mãn A-B<32.

Bài II (2,0 điểm)

1) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:

Một ô tô và một xe máy cùng khởi hành từ địa điểm A và đi đến địa điểm B. Do vận tốc của ô tô lớn hơn vận tốc của xe máy là 20 km/h nên ô tô đến B sớm hơn xe máy 30 phút. Biết quãng đường AB dài 60km, tính vận tốc của mỗi xe. (Giả định rằng vận tốc mỗi xe là không đổi trên toàn bộ quãng đường AB.)

2) Quả bóng đá thường được sử dụng trong các trận thi đấu dành cho trẻ em từ 6 tuổi đến 8 tuổi có dạng một hình cầu với bán kính bằng 9,5cm. Tính diện tích bề mặt của quả bóng đó (lấy π≈3,14).

Đề thi Toán vào 10 Hà Nội năm 2022

Bài III (2,5 điểm)

1) Giải h phương trình: 2x +12y+2=53x-4y + 2=2.

2) Trong mặt phẳng tọa độ Oxy, cho parabol (P) : y=x2 và đường thẳng (d) :y=2⁢x+m2.

a) Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt.

b) Tìm tất cả giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1 , x2 thỏa mãn (x1+1)⁢(x2+1)=-3>.

Bài IV (3,0 điểm)

Cho tam giác ABC vuông cân tại đỉnh A. Gọi E là một điểm bất kỳ trên tia CA sao cho điểm A nằm giữa hai điểm C và E. Gọi M và H lần lượt là chân các đường vuông góc kẻ từ điểm A đến các đường thẳng BC  BE.

1) Chứng minh tứ giác AMBH là tứ giác nội tiếp.

2) Chứng minh BC.BM = BH.BE và HM là tia phân giác của góc AHB.

3) Lấy điểm N sao cho M là trung điểm của đoạn thẳng AN. Gọi K là giao điểm của hai đường thẳng EN  AB. Chứng minh ba điểm H , K , M là ba điểm thẳng hàng.

Bài V (0,5 điểm)

Với các số thực không âm x và y thỏa mãn x2 + y2 = 4, tìm giá trị nhỏ nhất của biểu thức P = x + 2y.

……………. Hết …………

Đề thi vào lớp 10 Toán Hà Nội năm 2021 có đáp án

Sở Giáo dục và Đào tạo Hà Nội

Kì thi tuyển sinh vào lớp 10

Năm học 2021

Môn thi: Toán (hệ Công lập)

Thời gian làm bài: 120 phút

Bài I (2,0 điểm)

Cho hai biểu thức A=xx+3 và B=2⁢xx-3-3⁢x+9x-9 với x≥0,x≠9.

1) Tính giá trị của biểu thức A khi x = 16

2) Chứng minh A+B=3x+3. 

Bài II (2,5 điểm)

1) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:

Một tổ sản xuất phải làm xong 4800 bộ đồ bảo hộ y tế trong một số ngày quy định. Thực tế, mỗi ngày tổ đó làm được nhiều hơn 100 bộ đồ bảo hộ y tế so với số bộ đồ bảo hộ y tế phải làm trong một ngày theo kế hoạch. Vì thế 8 ngày trước khi hết hạn, tổ sản xuất đã làm xong 4800 bộ đồ bảo hộ y tế đó. Hỏi theo kế hoạch, mỗi ngày tổ sản xuất phải làm bao nhiêu bộ đồ bảo hộ y tế? (Giả định rằng số bộ đồ bảo hộ y tế mà tổ đó làm xong trong mỗi ngày là bằng nhau.)

2) Một thùng nước có dạng hình trụ với chiều cao 1,6m và bán kính đáy 0,5m . Người ta sơn toàn bộ phía ngoài mặt xung quanh của thùng nước này (trừ hai mặt đáy). Tính diện tích bề mặt được sơn của thùng nước (lấy π≈3,14).

Bài III (2,0 điểm)

1) Giải hệ phương trình: 3x + 1- 2y = -15x + 1+3y = 11

2) Trong mặt phẳng tọa độ Oxy, cho parabol (P):y=x2 và đường thẳng (d):y=2⁢x+m-2. Tìm tất cả giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1,x2 sao cho |x1-x2|=2.

Bài IV (3,0 điểm)

Cho tam giác ABC vuông tại A. Vẽ đường tròn tâm C, bán kính CA. Từ điểm B kẻ tiếp tuyến BM với đường tròn (C;C⁢A) (M là tiếp điểm, M và A nằm khác phía đối với đường thẳng BC).

1) Chứng minh bốn điểm A , C , M  B cùng thuộc một đường tròn.

2) Lấy điểm N thuộc đoạn thẳng AB (N khác A, N khác B). Lấy điểm P thuộc tia đối của tia MB sao cho MP = AN. Chứng minh tam giác CPN là tam giác cân và đường thẳng AM đi qua trung điểm của đoạn thẳng NP.

Bài V (0,5 điểm)

Với các số thực a và b thỏa mãn a2+b2=2, tìm giá trị nhỏ nhất của biểu thức P=3⁢(a+b)+a⁢b.

……………. Hết …………

Đề thi vào lớp 10 Toán Hà Nội năm 2020 có đáp án

Sở Giáo dục và Đào tạo Hà Nội

Kì thi tuyển sinh vào lớp 10

Năm học 2020

Môn thi: Toán (hệ Công lập)

Thời gian làm bài: 120 phút

Bài I (2,0 điểm)

Cho biểu thức A=x+1x+2 và B=3x-1-x+5x-1 với x≥0,x≠1.

1) Tính giá trị của biểu thức A khi x = 4.

2) Chứng minh B=2x+1.

3) Tìm các giá trị của x để P=2⁢A⁢B+x đạt giá trị nhỏ nhất.

Bài II (2,0 điểm)

1) Giải bài toán bằng cách lập phương trình hoặc hệ phương trình:

Quãng đường từ nhà An đến nhà Bình dài 3km. Buổi sáng, An đi bộ từ nhà An đến nhà Bình. Buổi chiều cùng ngày, An đi xe đạp từ nhà Bình về nhà An trên cùng quãng đường đó với vận tốc lớn hơn vận tốc đi bộ của An là 9km/h. Tính vận tốc đi bộ của An, biết thời gian đi buổi chiều ít hơn thời gian đi buổi sáng là 45 phút. (Giả định rằng An đi bộ với vận tốc không đổi trên toàn bộ quãng đường đó.)

2) Một quả bóng bàn có dạng một hình cầu có bán kính bằng 2cm. Tính diện tích bề mặt của quả bóng bàn đó (lấy π≈3,14).

Bài III (2,5 điểm)

1) Giải hệ phương trình:2x + 3y – 1=54x – 1y – 1=3.

2) Trong mặt phẳng tọa độ Oxy, xét đường thẳng (d):y=m⁢x+4 với m≠0.

a) Gọi A là giao điểm của đường thẳng (d) với trục Oy. Tìm tọa độ của điểm A .

b) Tìm tất cả các giá trị của m để đường thẳng (d) cắt trục Ox tại điểm B sao cho OAB  tam giác cân.

Bài IV (3,0 điểm)

Cho tam giác ABCcó ba góc nhọn và đường cao BE. Gọi H và K lần lượt là chân các đường vuông góc kẻ từ E đến các đường thẳng AB và BC.

1) Chứng minh tứ giác BHEK nội tiếp.

2) Chứng minh B⁢H.B⁢A=B⁢K.B⁢C.

3) Gọi F là chân đường vuông góc kẻ từ điểm C đến đường thẳng AB và I là trung điểm của EF. Chứng minh H , I , K thẳng hàng.

Bài V (0,5 điểm)

Giải phương trình: x+3⁢x-2=x2+1.