Chúng tôi xin giới thiệu bài Giải Toán 8 Chân trời sáng tạo bài 4: Hình bình hành – Hình thoi được TaiLieuViet sưu tầm và giới thiệuvới lời giải chi tiết, rõ ràng theo khung chương trình sách giáo khoa Toán 8 Chân trời sáng tạo. Mời các em cùng tham khảo để nắm được nội dung bài học.
Mục Lục
Toggle1. Hình bình hành
Thực hành 1 trang 74 sgk Toán 8 tập 1 CTST: Cho hình bình hành PQRS với I là giao điểm của hai đường chéo (Hình 4). Hãy chỉ ra các đoạn thẳng bằng nhau và các góc bằng nhau có trong hình.
Bài giải
Các đoạn thẳng bằng nhau: IS = IQ, IP = R, SP = QR, SR = PQ
Các góc bằng nhau:
Vận dụng 1 trang 74 sgk Toán 8 tập 1 CTST: Mắt lưới của một lưới bóng chuyền có dạng hình tứ giác có các cạnh đối song song. Cho biết độ dài hai cạnh của tứ giác này là 4 cm và 5 cm. Tìm độ dài hai cạnh còn lại.
Bài giải
Tứ giác có các cạnh đối song song suy ra tứ giác đó là hình bình hành
Do đó độ dài hai cạnh cò còn bằng độ dài hai cạnh đã cho là 4 cm và 5 cm
Vận dụng 2 trang 74 sgk Toán 8 tập 1 CTST: Mặt trước của một công trình xây dựng được làm bằng kính có dạng hình bình hành EFGH với M là giao điểm của hai đường chéo (Hình 6). Cho biết EF = 40 m, EM = 36 m, HM = 16 m. Tính độ dài cạnh HG và độ dài hai đường chéo.
Bài giải
EFGH là hình bình hành suy ra HG = EF = 40 m
EG = 2EM = 2 x 36 = 72 (m)
HF = 2HM = 2 x 16 =32 (m)
Thực hành 2 trang 76 sgk Toán 8 tập 1 CTST: Trong các tứ giác ở Hình 9, tứ giác nào không là hình bình hành?
Bài giải
a) Tứ giác ABCD có: AB = CD, BC = AD suy ra ABCD là hình bình hành
b) Tứ giác EFGH có: suy ra EFGH là hình bình hành
Tứ giác IJKL có: suy ra IJKL là hình bình hành
d) Tứ giác MNPQ có: OQ = ON, OM , OP suy ra MNPQ là hình bình hành
e) Tứ giác TSRU có: suy ra TSRU không là hình bình hành
g) mà hai góc này ở vị trí trong cùng phía suy ra VZ // XY
Tứ giác XYZV có: XY // VZ, XY = VZ suy ra XYZV là hình bình hành
Vận dụng 3 trang 76 sgk Toán 8 tập 1 CTST: Quan sát Hình 10, cho biết ABCD và AKCH đều là hình bình hành. Chứng minh ba đoạn thẳng AC, BD và HK có cùng trung điểm O.
AKCH là hình bình hành có hai đường chéo AC và HK suy ra AC và HK cắt nhau tại trung điểm của mỗi đường, do đó O cũng là trung điểm của HK
Vậy ba đoạn thẳng AC, BD và HK có cùng trung điểm O.
2. Hình thoi
Thực hành 3 trang 78 sgk Toán 8 tập 1 CTST: Cho hình thoi MNPQ có I là giao điểm của hai đường chéo.
a) Tính MP khi biết MN = 10 dm, IN = 6 dm
b) Tính khi biết
Bài giải
Áo dụng định lí Pythagore cho tam giác MNI vuông tại I:
do đó MI = 8 dm
b) Ta có:
Lại có MP là phân giác góc
Vận dụng 4 trang 78 sgk Toán 8 tập 1 CTST: Tính độ dài cạnh của các khuy áo hình thoi có độ dài hai đường chéo lần lượt là 3.2 cm và 2.4 cm
Bài giải
Độ dài cạnh khuy áo là: (cm)
Vận dụng 5 trang 79 sgk Toán 8 tập 1 CTST: Một hoa văn trang trí được ghép bởi ba hình tứ giác có độ dài mỗi cạnh đều bằng 2 cm (Hình 18). Gọi tên các tứ giác này và tính chu vi của hoa văn
Bài giải
Các tứ giác có độ dài mỗi cạn đều bằng nhau suy ra tứ giác là hình thoi
Chu vi hoa văn: 3 x 4 x 2 = 24 (cm)
Vận dụng 6 trang 79 sgk Toán 8 tập 1 CTST: Một tứ giác có chu vi là 52 cm và một đường chéo là 24 cm. Tìm độ dài của mỗi cạnh và đường chéo còn lại nếu hai đường chéo vuông góc tại trung điểm của mỗi đường.
Bài giải
Tứ giác có hai đường chéo vuông góc tại trung điểm của mỗi đường suy ra tứ giác đó là hình thoi.
Độ dài mỗi cạnh là: 52 : 4 = 13 (cm)
Độ dài đường chéo còn lại là: 2 x =10 (cm)
3. Bài tập
Bài tập 1 trang 80 sgk Toán 8 tập 1 CTST: Cần thêm một điều kiện gì để mỗi tứ giác trong Hình 19 trở thành hình bình hành?
Bài giải
a) AB = CD
b) EH // FG
c) OM = OP
d)
Bài tập 2 trang 80 sgk Toán 8 tập 1 CTST: Cho hình bình hành ABCD, kẻ AH vuông góc với BD tại H và CK vuông góc với BD tại K (Hình 21)
a) Chứng minh tứ giác AHCK là hình bình hành
b) Gọi I là trung điểm của HK. Chứng minh IB = ID
Bài giải
a) Xét tam giác vuông DKC và BHA ta có:
DC = AB( hbh ABCD)
(hbh ABCD, AB//DC)
Suy ra ( ch-gn)
=> CK=AH
Ta có : AH DB
CK DB
=> CK//AH
Xét tứ giác AKCH có CK//AH (cmt)
CK=AH (cmt)
=> AKCH là hình bình hành (dấu hiệu 3)
b) AKCH là hình bình hành suy ra AC và HK cắt nhau tại trung điểm của mỗi đường , do đó I là trung điểm của AC
ABCD là hình bình hành suy ra AC và BD cắt nhau tại trung điểm của mỗi đường , do đó I là trung điểm của BD hay IB = ID
Bài tập 3 trang 80 sgk Toán 8 tập 1 CTST: Cho hình bình hành ABCD. Gọi E là trung điểm AD, F là trung điểm của BC.
a) Chứng minh rằng tứ giác EBFD là hình bình hành.
b) Gọi O là giao điểm của hai đường chéo của hình bình hành ABCD. Chứng minh rằng ba điểm E, O, F thẳng hàng
Bài giải
a) Ta có :
ED= (E là trung điểm của AD)
BF= (F là trung điểm của BC)
Và AD=BC (ABCD là hình bình hành)
⇒ED=BF
Mà ED // BF (AD // BC, E∈AD;F∈BC)
Do đó tứ giác EBFD là hình bình hành.
b) O là tâm đối xứng của hình bình hành ABCD ⇒Olà trung điểm của BD
Hình bình hành EBFD có O là trung điểm của BD ⇒O là trung điểm của EF.
⇒O∈EF
Vậy E, O, F thẳng hàng.
Bài tập 4 trang 80 sgk Toán 8 tập 1 CTST: Cho hình bình hành ABCD (AB > BC). Tia phân giác của góc D cắt AB ở E, tia phân giác của góc B cắt CD ở F.
a) Chứng minh rằng DE // BF.
b) Tứ giác DEBF là hình gì?
Bài giải
a) Ta có (tứ giác ABCD là hình bình hành)
(BF là tia phân giác của ) và (DE là tia phân giác của )
⇒
Mà (hai góc so le trong và AB // CD)
Nên
Lại có là hai góc đồng vị
⇒DE//BF
b) Tứ giác DEBF có DE // BF và EB // DF (AB // CD)
Do đó tứ giác DEBF là hình bình hành (dấu hiệu nhận biết)
Bài tập 5 trang 80 sgk Toán 8 tập 1 CTST: Cho hình bình hành ABCD. Gọi I, K lần lượt là trung điểm của các cạnh AB và CD, E và F là giao điểm của AK và CI với BD.
a) Chứng minh tứ giác AKCI là hình bình hành.
b) Chứng minh rằng DE = EF = FB.
Bài giải
a) Ta có:
AI= (I là trung điểm của AB),
CK= (K là trung điểm của CD)
Và AB=CD(ABCD là hình bình hành)
⇒AI=CK
Mà AI // CK (AB//CD,I∈AB,K∈CD)
Do đó tứ giác AICK là hình bình hành.
b) ΔABEcó I là trung điểm của AB và IF//AE
Nên F là trung điểm của EB ⇒BF=EF (1)
ΔDCFcó EK // FC và K là trung điểm của CD
Nên E là trung điểm của DF ⇒DE=EF (2)
Từ (1) và (2) suy ra DE=EF=BF
Bài tập 6 trang 81 sgk Toán 8 tập 1 CTST: Cho hình 21. Chứng minh rằng tứ giác EFGH là hình thoi.
Bài giải
E, F lần lượt là trung điểm của AB và BC
⇒EF là đường trung bình của tam giác ABC
⇒EF//AC và EF= (1)
H, G lần lượt là trung điểm của AD và DC
⇒HG là đường trung bình của tam giác ACD
⇒HG//ACvà HG= (2)
Từ (1) và (2) ⇒EF//HGvà EF=HG
Vậy tứ giác EFGH là hình bình hành.
Tứ giác ABCD có AB=CDvà AD=BC⇒ Tứ giác ABCD là hình bình hành.
Mà ⇒ ABCD là hình chữ nhật.
Xét ΔEBFvà ΔCGFcó :
EB=EC(gt)
BF=FC(gt)
⇒ΔEBF=ΔGCF(c.g.c)⇒EF=GF
Chứng minh tương tự ta có GF=GH,GH=EF⇒EF=GF=GH=EH
Do đó tứ giác EFGH là hình thoi.
Bài tập 7 trang 81 sgk Toán 8 tập 1 CTST: Cho hình thoi ABCD, hai đường chéo AC và BD cắt nhau tại O. Biết AC = 6 cm, BD = 8 cm. Tính độ dài cạnh của hình thoi ABCD.
Bài giải
Hình thoi ABCD có hai đường chéo AC và BD cắt nhau tại O (gt)
⇒O là trung điểm của AC và BD
⇒AO = và DO =
⇒AO = =3(cm) và DO = = 4(cm)
AC⊥BD tại O (vì ABCD là hình thoi)
ΔADO vuông tại O có (Định lí Pytago)
⇒⇒AD = 5 (cm)
Vậy AB = BC = DC = AD = 5(cm)
Bài tập 8 trang 81 sgk Toán 8 tập 1 CTST: Cho tam giác ABC cân tại A, gọi M là trung điểm của BC. Lấy điểm D đối xứng với điểm A qua BC.
a) Chứng minh tứ giác ABCD là hình thoi.
b) Gọi E, F lần lượt là trung điểm của AB và AC, lấy điểm O sao cho E là trung điểm của OM. Chứng minh hai tam giác AOB và MBO vuông và bằng nhau
b) Chứng minh tứ giác AEMF là hình thoi.
Bài giải
a) Tứ giác ABCD có:
AD và BC cắt nhau tại M (gt);
M là trung điểm của BC (gt)
M là trung điểm của AD (D đối xứng với A qua BC)
Do đó tứ giác ABDC là hình bình hành
Mà AD⊥BC (vì D đối xứng với A qua BC)
Nên hình bình hành ABDC là hình thoi.
b) Tứ giác OAMB có:
OM và AB cắt nhau tại E (gt);
E là trung điểm của OM (gt)
E là trung điểm của AB (gt)
Do đó tứ giác OAMB là hình bình hành
Suy ra
Do đó AOB và MBO là tam giác vuông.
Xét tam giác AOB và MBO ta có:
AO = MB (OAMB là hình bình hành)
OB chung
Suy ra (c.g.c)
c) Ta có ME= (đường trung tuyến ứng với cạnh huyền)
Và AE= (E là trung điểm của AB)
⇒EM=EA= (1)
Ta có MF= (đường trung tuyến ứng với cạnh huyền)
Và AF=(F là trung điểm của AC)
⇒MF=AF=(2)
AB=AC(ΔABC cân tại A) (3)
Từ (1), (2) và (3) suy ra EM = EA = MF = AF
Do đó tứ giác AEMF là hình thoi.
Bài tập 9 trang 81 sgk Toán 8 tập 1 CTST: Tìm các hình bình hành và hình thang có trong Hình 22
Bài giải
Các hình bình hành: ABGH, AEIL, CDFG
Các hình thang: ABGH, ACGH, ADFH, AEFH, BDFG, CEFG, AEIK, AEIL, CDFG
————————————-
Trên đây, TaiLieuViet đã gửi tới các bạn Giải Toán 8 bài 4: Hình bình hành – Hình thoi CTST. Trong quá trình học môn Toán lớp 8, các bạn học sinh chắc hẳn sẽ gặp những bài toán khó, phải tìm cách giải quyết. Hiểu được điều này, TaiLieuViet đã sưu tầm và chọn lọc thêm phần Giải Toán 8 hay Giải Vở BT Toán 8 để giúp các bạn học sinh học tốt hơn.
- Toán 8 Chân trời sáng tạo bài 5: Hình chữ nhật – Hình vuông
Toán 8 từ năm học 2023 – 2024 trở đi sẽ được giảng dạy theo 3 bộ sách: Chân trời sáng tạo; Kết nối tri thức với cuộc sống và Cánh diều. Việc lựa chọn giảng dạy bộ sách nào sẽ tùy thuộc vào các trường. Để giúp các thầy cô và các em học sinh làm quen với từng bộ sách mới, TaiLieuViet sẽ cung cấp lời giải bài tập sách giáo khoa, sách bài tập, trắc nghiệm toán từng bài và các tài liệu giảng dạy, học tập khác. Mời các bạn tham khảo qua đường link bên dưới:
- Toán 8 Chân trời sáng tạo
- Toán 8 Kết nối tri thức
- Toán 8 Cánh diều
Related posts
Tài liệu nổi bật
Categories
- Âm Nhạc – Mỹ Thuật Lớp 9 (17)
- Âm nhạc lớp 6 – KNTT (31)
- Âm Nhạc Lớp 7- CTST (23)
- Bài tập Toán 9 (8)
- Chưa phân loại (32)
- Chuyên đề Hóa học 12 (196)
- Chuyên đề Sinh học lớp 12 (61)
- Chuyên đề Toán 9 (50)
- Công Nghệ Lớp 10- CD (58)
- Công Nghệ Lớp 10- KNTT (52)
- Công nghệ Lớp 11 – KNTT (22)
- Công Nghệ Lớp 6 – CTST (15)
- Công Nghệ Lớp 6 – KNTT (16)
- Công Nghệ Lớp 7- CTST (18)
- Công Nghệ Lớp 7- KNTT (19)
- Công nghệ Lớp 8 – CD (21)
- Công nghệ Lớp 8 – CTST (18)
- Công nghệ Lớp 8 – KNTT (7)
- Công Nghệ Lớp 9 (114)
- Đề thi học kì 2 lớp 9 môn Văn (35)
- Địa Lí Lớp 10- CD (99)
- Địa Lí Lớp 10- KNTT (77)
- Địa lí Lớp 11 – CD (31)
- Địa lí Lớp 11 – CTST (23)
- Địa lí Lớp 11 – KNTT (19)
- Địa Lí Lớp 12 (134)
- Địa lí Lớp 6 – CTST (36)
- Địa lí Lớp 6 – KNTT (30)
- Địa Lí Lớp 7- CTST (22)
- Địa Lí Lớp 7- KNTT (19)
- Địa Lí Lớp 9 (290)
- GDCD 12 (28)
- GDCD Lớp 6 – CTST (8)
- GDCD Lớp 6 – KNTT (12)
- GDCD Lớp 9 (94)
- Giải bài tập Địa Lí 12 (12)
- Giải bài tập SGK Toán 12 (8)
- Giải bài tập Sinh học 12 (45)
- Giải SBT Hóa học 12 (71)
- Giải vở BT Văn 9 (122)
- Giáo Dục Công Dân Lớp 7- CTST (12)
- Giáo Dục Công Dân Lớp 7- KNTT (10)
- Giáo dục công dân Lớp 8 – CD (10)
- Giáo dục công dân Lớp 8 – CTST (10)
- Giáo dục công dân Lớp 8 – KNTT (10)
- Giáo Dục Quốc Phòng Lớp 10- CD (12)
- Giáo Dục Quốc Phòng Lớp 10- KNTT (12)
- Hóa Học Lớp 10- CD (30)
- Hóa Học Lớp 10- KNTT (61)
- Hoá Học Lớp 11 – CD (19)
- Hoá học Lớp 11 – CTST (19)
- Hoá học Lớp 11 – KNTT (25)
- Hóa Học Lớp 12 (130)
- Hóa Học Lớp 9 (717)
- Hoạt Động Trải Nghiệm Lớp 10- KNTT (52)
- Hoạt Động Trải Nghiệm Lớp 7- CTST (40)
- Hoạt Động Trải Nghiệm Lớp 7- KNTT (16)
- Hoạt động trải nghiệm Lớp 8 – CD (19)
- Hoạt động trải nghiệm Lớp 8 – CTST (9)
- Hoạt động trải nghiệm Lớp 8 – KNTT (18)
- Khoa học tự nhiên Lớp 6 – CTST (46)
- Khoa học tự nhiên Lớp 6 – KNTT (57)
- Khoa Học Tự Nhiên Lớp 7- CTST (51)
- Khoa học tự nhiên Lớp 8 – CD (51)
- Khoa học tự nhiên Lớp 8 – CTST (33)
- Khoa học tự nhiên Lớp 8 – KNTT (37)
- Kinh Tế & Pháp Luật Lớp 10 – CD (21)
- Kinh tế & Pháp luật Lớp 11 – CD (21)
- Kinh tế & Pháp luật Lớp 11 – CTST (11)
- Kinh tế & Pháp luật Lớp 11 – KNTT (11)
- Lịch Sử Lớp 10- CD (34)
- Lịch Sử Lớp 10- CTST (20)
- Lịch Sử Lớp 10- KNTT (42)
- Lịch sử Lớp 11 – CTST (13)
- Lịch sử Lớp 11 – KNTT (13)
- Lịch sử Lớp 6 – CTST (21)
- Lịch sử Lớp 6 – KNTT (22)
- Lịch Sử Lớp 7- CTST (19)
- Lịch sử lớp 7- KNTT (18)
- Lịch Sử Lớp 9 (148)
- Lịch sử và Địa lí Lớp 8 – CTST (40)
- Lịch sử và Địa lí Lớp 8 – KNTT (33)
- Lý thuyết Địa lý 12 (4)
- Lý thuyết Lịch sử lớp 9 (33)
- Lý thuyết Ngữ Văn (83)
- Lý thuyết Ngữ Văn 12 (18)
- Lý thuyết Sinh học 12 (41)
- Mở bài – Kết bài hay (55)
- Mở bài lớp 12 hay (24)
- Nghị luận xã hội (34)
- Ngữ Văn Lớp 10- CD (113)
- Ngữ Văn Lớp 10- CTST (79)
- Ngữ Văn Lớp 10- KNTT (198)
- Ngữ Văn Lớp 11 – CD (51)
- Ngữ văn Lớp 11 – CTST (89)
- Ngữ Văn Lớp 11 – KNTT (107)
- Ngữ Văn Lớp 12 (379)
- Ngữ Văn Lớp 6 – KNTT (293)
- Ngữ Văn Lớp 7- CTST (103)
- Ngữ Văn Lớp 7- KNTT (66)
- Ngữ văn Lớp 8 – CD (48)
- Ngữ văn Lớp 8 – CTST (123)
- Ngữ văn Lớp 8 – KNTT (196)
- Ngữ Văn Lớp 9 (28)
- Phân tích các tác phẩm lớp 12 (12)
- Sinh Học Lớp 10- CD (49)
- Sinh Học Lớp 10- CTST (61)
- Sinh Học Lớp 10- KNTT (71)
- Sinh Học Lớp 11 – CD (16)
- Sinh học Lớp 11 – CTST (18)
- Sinh học Lớp 11 – KNTT (18)
- Sinh Học Lớp 9 (229)
- Soạn Anh 12 mới (86)
- Soạn văn 9 (50)
- SOẠN VĂN 9 BÀI 1 (50)
- SOẠN VĂN 9 BÀI 2 (50)
- Tác giả – Tác phẩm (41)
- Tác giả – Tác phẩm Ngữ Văn 12 (13)
- Thi THPT QG môn Địa lý (12)
- Thi THPT QG môn Sinh (8)
- Tiếng Anh Lớp 10 Friends Global (57)
- Tiếng Anh Lớp 10 Global Success (604)
- Tiếng Anh Lớp 10 iLearn Smart World (98)
- Tiếng anh Lớp 11 Friends Global (171)
- Tiếng anh Lớp 11 Global Success (368)
- Tiếng anh Lớp 11 iLearn Smart World (104)
- Tiếng Anh Lớp 12 cũ (168)
- Tiếng Anh Lớp 6 Friends Plus (114)
- Tiếng Anh Lớp 6 Global Success (174)
- Tiếng Anh Lớp 7 Friends Plus (160)
- Tiếng Anh Lớp 8 Friends plus (71)
- Tiếng anh Lớp 8 Global Success (79)
- Tiếng anh Lớp 8 iLearn Smart World (40)
- Tiếng Anh Lớp 9 Mới (211)
- Tin Học Lớp 10- CD (24)
- Tin Học Lớp 10- KNTT (33)
- Tin học Lớp 11 – KNTT (21)
- Tin Học Lớp 6 – CTST (41)
- Tin Học Lớp 6- KNTT (17)
- Tin Học Lớp 7- CTST (14)
- Tin Học Lớp 7- KNTT (16)
- Tin học Lớp 8 – CD (36)
- Tin học Lớp 8 – CTST (10)
- Tin học Lớp 8 – KNTT (5)
- Tin Học Lớp 9 (21)
- Toán 10 sách Chân trời sáng tạo (42)
- Toán Lớp 1 – KNTT (1)
- Toán Lớp 10- CD (44)
- Toán Lớp 10- CTST (39)
- Toán Lớp 10- KNTT (161)
- Toán Lớp 11 – CD (19)
- Toán Lớp 11 – CTST (44)
- Toán Lớp 11 – KNTT (46)
- Toán Lớp 12 (123)
- Toán Lớp 6 – CTST (62)
- Toán Lớp 6 – KNTT (102)
- Toán Lớp 7- CTST (52)
- Toán Lớp 7- KNTT (74)
- Toán Lớp 8 – CD (23)
- Toán Lớp 8 – CTST (21)
- Toán Lớp 8 – KNTT (34)
- Toán Lớp 9 (194)
- Tóm tắt Ngữ văn (16)
- Trắc nghiệm Ngữ Văn (75)
- Trắc nghiệm Toán 9 (61)
- Trải nghiệm hướng nghiệp Lớp 11 – KNTT (8)
- Văn mẫu 12 phân tích chuyên sâu (12)
- Văn mẫu 9 (273)
- Vật Lí Lớp 10- CD (39)
- Vật Lí Lớp 10- KNTT (61)
- Vật Lí Lớp 11 – CD (18)
- Vật lí Lớp 11 – CTST (20)
- Vật lí Lớp 11 – KNTT (26)
- Vật Lý Lớp 9 (217)