Giải Toán 10 Bài 5: Hai dạng phương trình quy về phương trình bậc hai CD được TaiLieuViet.vn sưu tầm và xin gửi tới bạn đọc cùng tham khảo.

Bài 1 trang 58 SGK Toán 10 CD

Giải các phương trình sau:

a) sqrt {2{x^2} - 3x - 1} = sqrt {2x - 3}

b) sqrt {4{x^2} - 6x - 6} = sqrt {{x^2} - 6}

c) sqrt {x + 9} = 2x - 3

d) sqrt { - {x^2} + 4x - 2} = 2 - x

Lời giải

a) Bình phương hai vế ta được

2{x^2} - 3x - 1 = 2x - 3

begin{array}{l} Leftrightarrow 2{x^2} - 5x +2 = 0\ Leftrightarrow left[ begin{array}{l}x = 2\x = frac{1}{2}end{array} right.end{array}

Thay các giá trị tìm được vào bất phương trình 2x - 3 ge 0 thì chỉ x=2 thỏa mãn.

Vậy tập nghiệm của phương trình là S = left{2 right}

b) Bình phương hai vế ta được

begin{array}{l}4{x^2} - 6x - 6 = {x^2} - 6\ Leftrightarrow 3{x^2} - 6x = 0\ Leftrightarrow left[ begin{array}{l}x = 0\x = 2end{array} right.end{array}

Thay các giá trị tìm được vào bất phương trình {x^2} - 6 ge 0 thì thấy chỉ có nghiệm x = 2 thỏa mãn.

Vậy tập nghiệm của phương trình là S = left{ 2 right}

c) sqrt {x + 9} = 2x - 3

Ta có: 2x - 3 ge 0

Bình phương hai vế của (*) ta được:

begin{array}{l}x + 9 = {left( {2x - 3} right)^2}\ Leftrightarrow 4{x^2} - 12x + 9 = x + 9\ Leftrightarrow 4{x^2} - 13x = 0\ Leftrightarrow left[ begin{array}{l}x = 0left( {KTM} right)\x = frac{{13}}{4}left( {TM} right)end{array} right.end{array}

Vậy tập nghiệm của phương trình là S = left{ {frac{{13}}{4}} right}

d) sqrt { - {x^2} + 4x - 2} = 2 - x

Ta có: 2 - x ge 0 Leftrightarrow x le 2

Bình phương hai vế của (**) ta được:

begin{array}{l} - {x^2} + 4x - 2 = {left( {2 - x} right)^2}\ Leftrightarrow - {x^2} + 4x - 2 = {x^2} - 4x + 4\ Leftrightarrow 2{x^2} - 8x + 6 = 0\ Leftrightarrow left[ begin{array}{l}x = 1left( {TM} right)\x = 3left( {KTM} right)end{array} right.end{array}

Vậy tập nghiệm của phương trình là S = left{ 1 right}

Bài 2 trang 59 SGK Toán 10 CD

Giải các phương trình sau:

a) sqrt {2 - x} + 2x = 3

b) sqrt { - {x^2} + 7x - 6} + x = 4

Lời giải

begin{array}{l}2 - x = {left( {3 - 2x} right)^2}\ Leftrightarrow 2 - x = 9 - 12x + 4{x^2}\ Leftrightarrow 4{x^2} - 11x + 7 = 0\ Leftrightarrow left[ begin{array}{l}x = 1left( {TM} right)\x = frac{7}{4}left( {KTM} right)end{array} right.end{array}

Vậy tập nghiệm của phương trình là S = left{ 1 right}

b) sqrt { - {x^2} + 7x - 6} + x = 4

Ta có: 4 - x ge 0 Leftrightarrow x le 4

Bình phương hai vế của (2) ta được:

begin{array}{l} - {x^2} + 7x - 6 = {left( {4 - x} right)^2}\ Leftrightarrow - {x^2} + 7x - 6 = 16 - 8x + {x^2}\ Leftrightarrow 2{x^2} - 15x + 22 = 0\ Leftrightarrow left[ begin{array}{l}x = 2left( {TM} right)\x = frac{{11}}{2}left( {KTM} right)end{array} right.end{array}

Vậy tập nghiệm của phương trình là S = left{ 2 right}

Bài 3 trang 59 SGK Toán 10 CD

Để leo lên một bức tường, bác Nam dùng một chiếc thang có chiều dài cao hơn bức tường đó 1 m. Ban đầu, bác Nam đặt chiếc thang mà đầu trên của chiếc thang đó vừa chạm đúng vào mép trên bức tường (Hình 33a). Sau đó, bác Nam dịch chuyển chân thang vào gần chân tường thêm 0,5 m thì bác Nam nhận thấy thang tạo với mặt đất một góc {60^0} (Hình 33b). Bức tường cao bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?

Giải Toán 10 Bài 5 CD

Lời giải

Giải Toán 10 Bài 5 CD

Gọi chiều cao bức tường DG là x (m) (x>0)

Chiều dài chiếc thang là x+1 (m)

Khoảng cách từ chân thang sau khi bác Nam điều chỉnh là: EG = frac{{DG}}{{sqrt 3 }} = frac{{xsqrt 3 }}{3} (m)

Áp dụng định lý Py-ta-go cho tam giác vuông ABC ta có:

BC = sqrt {{{left( {x + 1} right)}^2} - {x^2}} (m)

Bác Nam dịch chuyển chân thang vào gần chân tường thêm 0,5 m nên ta có:

begin{array}{l} Leftrightarrow sqrt {{{left( {x + 1} right)}^2} - {x^2}} = frac{x}{{sqrt 3 }} + 0,5\ Leftrightarrow sqrt {2x + 1} = frac{x}{{sqrt 3 }} + 0,5left( * right)end{array}

Ta có frac{x}{{sqrt 3 }} + 0,5 ge 0 Leftrightarrow frac{x}{{sqrt 3 }} ge - frac{1}{2}Leftrightarrow x ge - frac{{sqrt 3 }}{2} (Luôn đúng do x>0)

Ta bình phương hai vế (*) ta được:

begin{array}{l}2x + 1 = {left( {frac{x}{{sqrt 3 }} + 0,5} right)^2}\ Leftrightarrow 2x + 1 = frac{{{x^2}}}{3} + frac{x}{{sqrt 3 }} + 0,25\ Leftrightarrow frac{{{x^2}}}{3} + left( {frac{{sqrt 3 }}{3} - 2} right)x - frac{3}{4} = 0\ Leftrightarrow left[ begin{array}{l}x approx 4,7left( {tm} right)\x approx - 0,5left( {ktm} right)end{array} right.end{array}

Vậy chiều cao của bức tường là 4,7 m.

Bài 4 trang 59 SGK Toán 10 CD

Một người đứng ở điểm A trên một bờ sông rộng 300 m, chèo thuyền đến vị trí D, sau đó chạy bộ đến vị trí B cách C một khoảng 800 m như Hình 34. Vận tốc chèo thuyền là 6 km/h, vận tốc chạy bộ là 10 km/h và giả sử vận tốc dòng nước không đáng kể. Tính khoảng cách từ vị trí C đến D, biết tổng thời gian người đó chèo thuyền và chạy bộ từ A đến B là 7,2 phút.

Giải Toán 10 Bài 5 CD

Lời giải

Đổi 300 m =0,3 km, 800 m = 0,8 km

7,2 phút =0,12(h)

Gọi khoảng cách từ C đến D là x (km) (0,8>x>0)

Khi đó, DB=0,8-x (km)

Theo định lý Py-ta-go ta có: AD = sqrt {A{C^2} + C{D^2}} = sqrt {0,{3^2} + {{left( {0,8 - x} right)}^2}} (km)

Thời gian đi từ A đến D là: frac{{sqrt {0,{3^2} + {{left( {0,8 - x} right)}^2}} }}{6}left( h right)

Thời gian đi từ D đến B là: frac{{0,8 - x}}{{10}}left( h right)

Tổng thời gian người đó chèo thuyền và chạy bộ từ A đến B là 7,2 phút nên ta có phương trình:

begin{array}{l}frac{{sqrt {0,{3^2} + {{left( {0,8 - x} right)}^2}} }}{6} + frac{{0,8 - x}}{{10}} = 0,12\ Leftrightarrow sqrt {0,{3^2} + {{left( {0,8 - x} right)}^2}} .5 + 3.left( {0,8 - x} right) = 0,12.30\ Leftrightarrow 5.sqrt {0,{3^2} + {{left( {0,8 - x} right)}^2}} - 3x - 1,2 = 0\ Leftrightarrow 5.sqrt {0,{3^2} + {{left( {0,8 - x} right)}^2}} = 3x + 1,2\ Leftrightarrow 25.left[ {0,{3^2} + {{left( {0,8 - x} right)}^2}} right] = {left( {3x + 1,2} right)^2}\ Leftrightarrow 25.left( {{x^2} - 1,6x + 0,73} right) = 9{x^2} + 7,2x + 1,44\ Leftrightarrow 16{x^2} - 47,2x + 16,81 = 0\ Leftrightarrow left[ begin{array}{l}x = frac{{59 + 30sqrt 2 }}{{40}} > 0,8left( {ktm} right)\x = frac{{59 - 30sqrt 2 }}{{40}} approx 0,414left( {tm} right)end{array} right.end{array}

Ta bình phương được do x > 0 Rightarrow 3x + 1,2 > 0

Vậy khoảng cách từ vị trí C đến D là 414m.

Bài 5 trang 59 SGK Toán 10 CD

Một ngọn hải đăng đặt tại vị trí A cách bờ biển một khoảng cách AB = 4 km. Trên bờ biển có một cái kho ở vị trí C cách B một khoảng là 7 km. Người canh hải đăng có thể chèo thuyền từ A đến vị trí M trên bờ biển với vận tốc 3 km/h rồi đi bộ đến C với vận tốc 5 km/h như Hình 35. Tính khoảng cách từ vị trí B đến M, biết thời gian người đó đi từ A đến C là 148 phút.

Giải Toán 10 Bài 5 CD

Gọi BM=x km (0<x<7)

=> MC=7-x (km)

Ta có: AM = sqrt {A{B^2} + B{M^2}} = sqrt {16 + {x^2}} left( {km} right)

Thời gian từ A đến M là: frac{{sqrt {16 + {x^2}} }}{3}left( h right)

Thời gian từ M đến C là: frac{{7 - x}}{5}left( h right)

Tổng thời gian từ A đến C là 148 phút nên ta có:

begin{array}{l}frac{{sqrt {16 + {x^2}} }}{3} + frac{{7 - x}}{5} = frac{{148}}{{60}}\ Leftrightarrow frac{{sqrt {16 + {x^2}} }}{3} + frac{{7 - x}}{5} = frac{{37}}{{15}}\ Leftrightarrow frac{{5sqrt {16 + {x^2}} }}{{15}} + frac{{3.left( {7 - x} right)}}{{15}} = frac{{37}}{{15}}\ Leftrightarrow 5sqrt {16 + {x^2}} + 3.left( {7 - x} right) = 37\ Leftrightarrow 5sqrt {16 + {x^2}} = 16 + 3x\ Leftrightarrow 25.left( {16 + {x^2}} right) = 9{x^2} + 96x + 256\ Leftrightarrow 16{x^2} - 96x + 144 = 0\ Leftrightarrow x = 3left( {tm} right)end{array}

Vậy khoảng cách từ vị trí B đến M là 3 km.

TaiLieuViet.vn vừa gửi tới bạn đọc bài viết Giải Toán 10 Bài 5: Hai dạng phương trình quy về phương trình bậc hai CD. Bài viết đã hướng dẫn bạn đọc trả lời các câu hỏi trong SGK Toán 10 CD. Mời các bạn cùng tham khảo thêm tài liệu học tập các môn Ngữ văn 10 CD, Tiếng Anh lớp 10…

  • Bài tập cuối chương 3 CD