TaiLieuViet xin giới thiệu bài Giải Toán 8 Kết nối tri thức bài 11: Hình thang cân được chúng tôi sưu tầm và giới thiệuvới lời giải chi tiết, rõ ràng theo khung chương trình sách giáo khoa Toán 8 Kết nối tri thức. Mời các em cùng tham khảo để nắm được nội dung bài học.

1. Hình thang. Hình thang cân

Luyện tập 1 trang 53 sgk Toán 8 tập 1 KNTT: Tính các góc của hình thang cân ABCD (AB // CD, biết widehat{C}=40^{circ} (H.3.15)

Giải Luyện tập 1 trang 53 sgk Toán 8 tập 1 Kết nối

Bài giải

Xét hình thang cân ABCD ta có: widehat{D}=widehat{C}=40^{circ}

widehat{A}=widehat{B}=frac{360^{circ} -80^{circ} }{2}=140^{circ}

2. Tính chất của hình thang cân

Hoạt động 1 trang 53 sgk Toán 8 tập 1 KNTT: Cho hình thang cân ABCD, AB // CD và AB < CD (H.3.16).

a) Từ A và B kẻ AHperp  DC, BI perp DC, Hin  CD, I in CD. Chứng minh rằng AH = BI bằng cách chứng minh Delta AHI=Delta IBA

b) Chứng minh Delta AHD=Delta BIC, từ đó suy ra AD = BC

Giải Hoạt động 1 trang 53 sgk Toán 8 tập 1 Kết nối

Bài giải

a) Xét tam giác vuông AHI và IBA ta có:

AI chung

widehat{AIH}=widehat{IAB} (so le trong)

Suy ra, Delta AHI=Delta IBA (cạnh huyền – góc nhọn)

Rightarrow AH = BI

b) Xét tam giác AHD và BIC ta có:

AH = BI

widehat{AD}=widehat{BCI}

Suy ra, Delta AHD=Delta BIC

Rightarrow AD = BC

Luyện tập 2 trang 53 sgk Toán 8 tập 1 KNTT: Cho tứ giác ABCD như Hình 3.18.

Biết rằng widehat{A}=widehat{B}=widehat{D1}

Chứng minh rằng AD = BC

Giải Luyện tập 2 trang 53 sgk Toán 8 tập 1 Kết nối

Bài giải

Xét tứ giác ABCD, ta có: widehat{A}=widehat{D1} (hai góc đồng vị) suy ra AB // DC Rightarrow ABCD là hình thang

Lại có widehat{A}=widehat{B} suy ra hình thang ABCD cân Rightarrow AD = BC

Hoạt động 2 trang 54 sgk Toán 8 tập 1 KNTT: Cho hình thang cân ABCD, kẻ hai đường chéo AC, BD (H.3.19). Hãy chứng minh Delta ACD=Delta BDC. Từ đó suy ra AC = BD.

Giải Hoạt động 2 trang 54 sgk Toán 8 tập 1 Kết nối

widehat{ADC}=widehat{BCD}

DC chung

Suy ra, Delta ACD=Delta BDC (c.g.c) Rightarrow

Luyện tập 3 trang 54 sgk Toán 8 tập 1 KNTT: Cho tam giác ABC cân tại A. Kẻ một đường thẳng d song song với BC, d cắt cạnh AB tại D và cắt cạnh AC tại E (H.3.20).

a) Tứ giác DECB là hình gì?

b) Chứng minh BE = CD.

Giải Luyện tập 3 trang 54 sgk Toán 8 tập 1 Kết nối

Bài giải

a) Xét tứ giác DECB có: DE // BC, widehat{DBC}=widehat{ECB} suy ra DECB là hình thang cân

b) DECB là hình thang cân, BE và CD là hai đường chéo của hình thang suy ra BE = CD

3. Bài tập

Bài tập 3.4 trang 55 sgk Toán 8 tập 1 KNTT: Hình thang trong Hình 3.23 có là hình thang cân không? Vì sao?

Giải Bài tập 3.4 trang 55 sgk Toán 8 tập 1 Kết nối

Bài giải

widehat{D}=180^{circ}-120^{circ}=60^{circ}neq widehat{C} suy ra ABCD không là hình thang cân

Bài tập 3.5 trang 55 sgk Toán 8 tập 1 KNTT: Cho hình thang ABCD (AB // CD). Kẻ đường thẳng vuông góc với AC tại C và đường vuông góc với BD tại D, hai đường thẳng này cắt nhau tại E. Chứng minh rằng nếu EC = ED thì hình thang ABCD là hình thang cân

Bài giải

Giải Bài tập 3.4 trang 55 sgk Toán 8 tập 1 Kết nối

Gọi giao điểm của AC và BD là H

Xét tam giác vuông ECH và EDH, ta có:

EH chung

EC = ED (gt)

Suy ra Delta ECH=Delta EDH (cạnh huyền – cạnh góc vuông) Rightarrow (1)

Ta có widehat{CEH}=widehat{DEH} (do Delta ECH=Delta EDH) suy ra EH là tia phân giác của tam giác cân ECD Rightarrow (do AB//CD)

Gọi giao điểm của EH và AB là K

Delta ECH=Delta EDHRightarrow widehat{EHC}=widehat{EHD}Rightarrow widehat{BHK}=widehat{AHK}

Xét tam giác vuông BHK và AHK ta có:

HK chung

widehat{BHK}=widehat{AHK}

Suy ra Delta BHK=Delta AHK (cạnh góc vuông – góc nhọn kề) Rightarrow (2)

Từ (1) và (2) suy ra AC = BD Rightarrow hình thang ABCD là hình thang cân

Bài tập 3.6 trang 55 sgk Toán 8 tập 1 KNTT: Vẽ hình thang cân ABCD (AB // CD) biết đáy lớn CD dài 4 cm, cạnh bên dài 2 cm và đường chéo dài 3 cm

Bài giải

  • Vẽ đáy lớn CD = 4 cm
  • Vẽ cung tròn tâm C bán kính 2 cm, cung tròn tâm D bán kính 3 cm, giao điểm của 2 cung tròn là B
  • Tương tự, vẽ cung tròn tâm D bán kính 2cm, cung tròn tâm C bán kính 3 cm, giao điểm của 2 cung tròn là A

(Tất cả cung tròn đều nằm trên cùng 1 nửa mặt phẳng bờ CD)

Bài tập 3.7 trang 55 sgk Toán 8 tập 1 KNTT: Hai tia phân giác của hai góc A, B của hình thang cân ABCD (AB// CD) cắt nhau tại điểm E trên cạnh đáy CD. Chứng minh rằng EC = ED

Bài giải

Giải Bài tập 3.4 trang 55 sgk Toán 8 tập 1 Kết nối

Ta có widehat{EAB}=widehat{EBA} suy ra tam giác EAB cân Rightarrow

Xét tam giác EAD và EBC ta có:

EA = EB

widehat{EAD}=widehat{EBC}

AD = BC

Suy ra Delta EAD=Delta EBC (c.g.c) Rightarrow EC=ED

Bài tập 3.8 trang 55 sgk Toán 8 tập 1 KNTT: Hình thang cân ABCD (AB // CD) có các đường thẳng AD, BC cắt nhau tại I, các đường thẳng AC, BD cắt nhau tại J. Chứng minh rằng đường thẳng IJ là đường trung trực của đoạn thẳng AB

Bài giải

Giải Bài tập 3.8 trang 55 sgk Toán 8 tập 1 Kết nối

Xét tam giác ACD và tam giác BDC có:

AD = BC (tính chất hình thang)

CD chung

AC = BD (do ABCD là hình thang cân)

Do đó, ∆ACD = ∆BDC (c.c.c)

Suy ra widehat{ACD}=widehat{BDC} hay widehat{JCD}=widehat{JDC}

⇒ Tam giác JCD cân tại I.

Do đó JD = JC (1)

Tam giác ICD có hai góc ở đáy bằng nhau widehat{C}=widehat{D} nên tam giác ICD cân tại I

⇒ ID = IC (2)

Từ (1) và (2) suy ra IJ là đường trung trực của CD.

Chứng minh tương tự có JA = JB, IA = IB

Suy ra J và I cùng thuộc đường trung trực của đoạn thẳng AB.

Do đó, IJ là đường trung trực của AB.

————————————-

Trên đây, TaiLieuViet đã gửi tới các bạn Giải Toán 8 bài 11: Hình thang cân KNTT. Trong quá trình học môn Toán lớp 8, các bạn học sinh chắc hẳn sẽ gặp những bài toán khó, phải tìm cách giải quyết. Hiểu được điều này, TaiLieuViet đã sưu tầm và chọn lọc thêm phần Đề thi giữa kì 1 lớp 8 hay Đề thi học kì 1 lớp 8 để giúp các bạn học sinh học tốt hơn.

  • Toán 8 Kết nối tri thức bài: Luyện tập chung trang 56

Toán 8 từ năm học 2023 – 2024 trở đi sẽ được giảng dạy theo 3 bộ sách: Chân trời sáng tạo; Kết nối tri thức với cuộc sống và Cánh diều. Việc lựa chọn giảng dạy bộ sách nào sẽ tùy thuộc vào các trường. Để giúp các thầy cô và các em học sinh làm quen với từng bộ sách mới, TaiLieuViet sẽ cung cấp lời giải bài tập sách giáo khoa, sách bài tập, trắc nghiệm toán từng bài và các tài liệu giảng dạy, học tập khác. Mời các bạn tham khảo qua đường link bên dưới:

  • Toán 8 Chân trời sáng tạo
  • Toán 8 Kết nối tri thức
  • Toán 8 Cánh diều