Giải Toán 8 Cánh diều bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử được chúng tôi sưu tầm và giới thiệuvới lời giải chi tiết, rõ ràng theo khung chương trình sách giáo khoa Toán 8 Cánh diều. Mời các em cùng tham khảo để nắm được nội dung bài học.

I. Phân tích đa thức thành phân tử

Hoạt động 1 trang 24 sgk Toán 8 tập 1 CD: Viết đa thức 6x^{2}-10x thành tích của hai đa thức bậc nhất.

Bài giải

6x^{2}-10x

II. Vậ dụng hằng đẳng thức vào phân tích đa thức thành nhân tử

1. Phân tích đa thức thành nhân tử bằng phương pháp vận dụng trực tiếp hằng đẳng thức 

Hoạt động 2 trang 25 sgk Toán 8 tập 1 CD: Viết mỗi đa thức sau thành tích của hai đa thức:

a. x^{2}-y^{2}

b. x^{3}-y^{3}

c. x^{3}+y^{3}

Bài giải

a. x^{2}-y^{2}

b. x^{3}-y^{3}

c. x^{3}+y^{3}

Luyện tập 1 trang 25 sgk Toán 8 tập 1 CD: Phân tích mỗi đa thức sau thành nhân tử.

a. (x+2y)^{2}-(x-2y)^{2}

b. 125+y^{3}

c. 27x^{3}-y^{3}

Bài giải

a. (x+2y)^{2}-(x-2y)^{2}

= (x+2y-x+2y)(x+2y+x-2y)

= 4y.2x

b. 125+y^{3}

= 5^{3}+y^{3}

= (5+y)(5^{2}-5y+y^{2})

= (5+y)(25-5y+y^{2})

c. 27x^{3}-y^{3}

= (3x)^{3}-y^{3}

= (3x-y)((3x)^{2}+3xy+y^{2})

= (3x-y)(9x^{2}+3xy+y^{2})

2. Phân tích đa thức thành nhân tử bằng phương pháp vận dụng hằng đẳng thức thông qua nhóm số hạng và đặt nhân tử chung

Bài giải

a. Nhóm 3 số hạng đầu và áp dụng hằng đẳng thức để viết nhóm đó thành tích:

x^{2}-2xy+y^{2}+x-y = (x^{2}-2xy+y^{2})+(x-y)

= (x-y)^{2}+(x-y)

=(x-y)(x-y)+(x-y)

b. Phân tích đa thức trên thành nhân tử:

(x-y)(x-y)+(x-y)

= (x-y)(x-y+1)

Luyện tập 2 trang 26 sgk Toán 8 tập 1 CD: Phân tích mỗi đa thức sau thành nhân tử.

a. 3x^{2}-6xy+3y^{2}-5x+5y

b. 2x^{2}y+4xy^{2}+2y^{3}-8y

Bài giải

a. 3x^{2}-6xy+3y^{2}-5x+5y

= 3(x^{2}-2xy+y^{2})-5(x-y)

= 3(x-y)^{2}-5(x-y)

= (x-y)(3x-3y-5)

b. 2x^{2}y+4xy^{2}+2y^{3}-8y

= 2x^{2}y+4xy^{2}+2y^{3}-8y

= 2y(x^{2}+2xy+y^{2})-8y

= 2y((x+y)^{2}-2^{2})

= 2y(x+y-2)(x+y+2)

III. Bài tập

Bài tập 1 trang 26 sgk Toán 8 tập 1 CD: Phân tích mỗi đa thức sau thành nhân tử:

a. 4x^{2}-12xy+9y^{2}

b. x^{3}+6x^{2}+12x+8

c. 8y^{3}-12y^{2}+6y-1

d. (2x+y)^{2}-4y^{2}

e. 27y^{3}+8

g. 64-125x^{3}

Bài giải

a. 4x^{2}-12xy+9y^{2}

= (2x)^{2}-2.2x.3y+(3y)^{2}

= (2x+3y)^{2}

= (2x+3y).(2x+3y)

b. x^{3}+6x^{2}+12x+8

= x^{3}+3.x^{2}.2+3.x.2^{2}+2^{3}

= (x+2)^{3}

c. 8y^{3}-12y^{2}+6y-1

= 8y^{3}-12y^{2}+6y-1

= (2y)^{3}-3.(2y)^{2}.1+3.2y.1^{2}-1^{3}

= (2y-1)^{3}

d. (2x+y)^{2}-4y^{2}

= (2x+y)^{2}-4y^{2}

= (2x+y)^{2}-(2y)^{2}

= (2x+y-2y)(2x+y+2y)

= (2x-y)(2x+3y)

e. 27y^{3}+8

= 27y^{3}+8

= (3y)^{3}+2^{3}

= (3y+2)((3y)^{2}-2.3y+2^{2})

= (3y+2)(9y^{2}-6y+4)

g. 64-125x^{3}

= 64-125x^{3}

= 4^{3}-(5x)^{3}

= (4-5x)(4^{2}+4.5x+(5x)^{2})

= (4-5x)(16+20x+25x^{2})

Bài tập 2 trang 27 sgk Toán 8 tập 1 CD: Phân tích mỗi đa thức sau thành nhân tử

a. x^{2}-25-4xy+4y^{2}

b. x^{3}-y^{3}

c. x^{4}-y^{4}+x^{3}y-xy^{3}

Bài giải

a. x^{2}-25-4xy+4y^{2}

= x^{2}-25-4xy+4y^{2}

= x^{2}-5^{2}-2x.2y+(2y)^{2}

= x^{2}-2x.2y+(2y)^{2}-5^{2}

= (x-2y)^{2}-5^{2}

= (x-2y-5)(x-2y+5)

b. x^{3}-y^{3}

= x^{3}-y^{3}+x^{2}y-xy^{2}

=(x^{3}-y^{3})+(x^{2}y-xy^{2})

= (x-y)(x^{2}+xy+y^{2})+xy(x-y)

= (x-y)(x^{2}+xy+y^{2}+xy)

= (x-y)(x+y)^{2}

c. x^{4}-y^{4}+x^{3}y-xy^{3}

= x^{4}-y^{4}+x^{3}y-xy^{3}

= (x^{4}+x^{3}y)-(y^{4}+xy^{3})

= x^{3}(x+y)-y^{3}(x+y)

= (x+y)(x^{3}-y^{3})

Bài tập 3 trang 27 sgk Toán 8 tập 1 CD: Tính giá trị của mỗi biểu thức sau:

a. A = x^{4}-2x^{2}y-x^{2}+y^{2}+y biết x^{2}-y=6

b. B = x^{2}y^{2}+2xyz+z^{2}biết xy+z=0

Bài giải

a. A = x^{4}-2x^{2}y-x^{2}+y^{2}+y

Ta có:

A = x^{4}-2x^{2}y-x^{2}+y^{2}+y

= (x^{4}-2x^{2}y+y^{2})-(x^{2}-y)

= (x^{2}-y)^{2}-(x^{2}-y)

= (x^{2}-y)((x^{2}-y)-1)

Theo bài ra ta có: x^{2}-y=6

Vậy A = 6.(6-1) = 30

Ta có:

B = x^{2}y^{2}+2xyz+z^{2}

=(xy)^{2}+2.xy.z+z^{2}

= (xy+z)^{2}

Theo bài ra ta có: xy+z=0

Vậy B = 0^{2} = 0

Bài tập 4 trang 27 sgk Toán 8 tập 1 CD: Chứng tỏ rằng:

a. M = 32^{2023}-32^{2021} chia hết cho 31.

b. N = 7^{6}+2.7^{3}+8^{2022}+1 chia hết cho 8.

Bài giải

a. M = 32^{2023}-32^{2021}

= 32^{2023}-32^{2021}

= 32^{2021}(32^{2}-1)

= 32^{2021}(32-1)(32+1)

= 32^{2021}.31.33

=> Vậy M chia hết cho 31.

b. N = 7^{6}+2.7^{3}+8^{2022}+1

= (7^{3})^{2}+2.7^{3}.1+1^{2}+8^{2022}

= (7^{3}+1)^{2}+8^{2022}

= 344^{2}+8^{2022}

= (43.8)^{2}+8^{2022}

Ta có: (43.8)^{2} chia hết cho 8; 8^{2022}chia hết cho 8

=> Vậy N chia hết cho 8

Bài tập 5 trang 27 sgk Toán 8 tập 1CD: Bác Hoa gửi tiết kiệm a đồng kì hạn 12 tháng ở một ngân hàng với lãi suất x %/năm.

a) Viết công thức tính số tiền bác Hoa có được sau 12 tháng dưới dạng tích, biết bác Hoa không rút tiền ra khỏi ngân hàng trong 12 tháng đó.

b) Sau kì hạn 12 tháng, tiễn lãi của kì hạn đó được cộng vào tiền vốn, rồi bác Hoa tiếp tục đem gửi cho kì hạn 12 tháng tiếp theo. Viết công thức tính tổng số tiền mà bác Hoa nhận được sau khi gửi 24 tháng trên dưới dạng tích, biết trong 24 tháng đó, lãi suất ngân hàng không thay đổi và bác Hoa không rút tiền ra khỏi ngân hàng.

Bài giải

a. Số tiền bác Hoa có được sau 12 tháng: a(1+x%) đồng.

b. Số tiền bác Hoa có được sau 24 tháng: a(1+x%)+a(1+x%).x%=a(1+x%)(1+x%) đồng.

Bài tiếp theo: Bài tập cuối chương I

————————————-

Trên đây, TaiLieuViet đã gửi tới các bạn Giải Toán 8 bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử CD.

Toán 8 từ năm học 2023 – 2024 trở đi sẽ được giảng dạy theo 3 bộ sách: Chân trời sáng tạo; Kết nối tri thức với cuộc sống và Cánh diều. Việc lựa chọn giảng dạy bộ sách nào sẽ tùy thuộc vào các trường. Để giúp các thầy cô và các em học sinh làm quen với từng bộ sách mới, TaiLieuViet sẽ cung cấp lời giải bài tập sách giáo khoa, sách bài tập, trắc nghiệm toán từng bài và các tài liệu giảng dạy, học tập khác. Mời các bạn tham khảo qua đường link bên dưới:

  • Toán 8 Chân trời sáng tạo
  • Toán 8 Kết nối tri thức
  • Toán 8 Cánh diều