Chúng tôi xin giới thiệu bài Giải Toán 8 Cánh diều bài 1: Phân thức đại số được TaiLieuViet sưu tầm và giới thiệuvới lời giải chi tiết, rõ ràng theo khung chương trình sách giáo khoa Toán 8 Cánh diều. Mời các em cùng tham khảo để nắm được nội dung bài học.

I. Khái niệm về phân thức đại số

1. Định nghĩa

Hoạt động 1 trang 29 sgk Toán 8 tập 1 CD: Cho biểu thức frac{2x+1}{x-2}

a. Biểu thức 2x+1 có phải là đa thức hay không?

b. Biểu thức x-2 có phải là đa thức khác đa thức 0 hay không?

Bài giải

a. Biểu thức 2x+1 là đa thức.

b. Biểu thức x-2 là đa thức khác đa thức 0.

Luyện tập 1 trang 30 sgk Toán 8 tập 1 CD: Trong những biểu thức sau, biểu thức nào là phân thức?

a. frac{x^{2}y+xy^{2}}{x-y}

b. frac{x^{2}-2}{frac{1}{x}}

Bài giải

a. Vì x^{2}y+xy^{2} và x-y là những đa thức và đa thức x-y  khác đa thức 0 nên biểu thức frac{x^{2}y+xy^{2}}{x-y} là phân thức.

b. Vì frac{1}{x} không phải là đa thức nên biểu thức frac{x^{2}-2}{frac{1}{x}} không phải là phân thức.

2. Hai phân thức bằng nhau

Hoạt động 2 trang 29 sgk Toán 8 tập 1 CD: Cho hai phân số frac{a}{b}frac{c}{d}. Nêu quy tắc để hai phân số đó bằng nhau.

Bài giải

Hai phân số đó bằng nhau nếu a.d = c.b.

Luyện tập 2 trang 30 sgk Toán 8 tập 1 CD: Mỗi cặp phân thức sau có bằng nhau hay không? Vì sao?

a. frac{x+y}{x^{2}-y^{2}};frac{1}{x-y}

b. b. frac{x}{x^{2}-1} và frac{1}{x-1}

Bài giải

a. Ta có: (x+y)(x-y)= x^{2}-y^{2}1.(x^{2}-y^{2}) =x^{2}-y^{2}

nên (x+y)(x-y)=1.(x^{2}-y^{2}). Vậy frac{x+y}{x^{2}-y^{2}} = frac{1}{x-y}

b. Ta có: x(x-1)=x^{2}-x1(x^{2}-1)=x^{2}-1

Do x^{2}-x neq  x^{2}-1 nên frac{x}{x^{2}-1}frac{1}{x-1} không bằng nhau.

II. Tính chất cơ bản của phân thức

1. Tính chất cơ bản

Hoạt động 3 trang 31 sgk Toán 8 tập 1 CD: 

a. Tìm số thích hợp cho ?: frac{2}{-7}=frac{4}{?};frac{-3}{-9}=frac{?}{3}

b. Hãy nhắc lại tính chất cơ bản của phân số

+, frac{-3}{-9}=frac{?}{3} nếu: -3.3=-9.(?) =>?=(-9):(-9)=1

b. Nhắc lại tính chất cơ bản của phân số:

– Nếu nhân cả tử số và mẫu số của một phân số với cùng một số khác 0 thì được một phân số bằng phân số đã cho.

– Nếu chia cả tử số và mẫu số của một phân số cho một nhân tử chung của chúng thì được một phân số bằng phân số đã cho.

Luyện tập 3 trang 32 sgk Toán 8 tập 1 CD: Dùng tính chất cơ bản của phân thức, hãy giải thích vì sao có thể viết: frac{3x+y}{y}=frac{3xy+y^{2}}{y^{2}}

Bài giải

Ta nhân cả tử và mẫu của phân thức đã cho với đa thức y (khác đa thức 0), ta được:

frac{3x+y}{y} = frac{(3x+y)y}{y.y}= frac{3xy+y^{2}}{y^{2}}

2. Ứng dụng

a. Rút gọn phân thức.

Hoạt động 4 trang 32 sgk Toán 8 tập 1 CD: Cho phân thức: frac{4x^{2}y}{6xy^{2}}

a. Tìm nhân tử chung của cả tử và mẫu.

b. Tìm phân thức nhận được sau khi chia cả tử và mẫu cho nhân tử chung đó.

Bài giải

a. Ta có: frac{4x^{2}y}{6xy^{2}}. Vậy nhân tử chung của cả tử và mẫu là xy.

b. Sau khi chia cả tử và mẫu cho nhân tử chung đó, phân thức nhân được sẽ là: frac{4x}{6y}

Luyện tập 4 trang 32 sgk Toán 8 tập 1 CD: Rút gọn mỗi phân thức sau:

a. frac{8x^{2}+4x}{1-4x^{2}}

b. frac{x^{3}-xy^{2}}{2x^{2}+2xy}

Bài giải

a. frac{8x^{2}+4x}{1-4x^{2}}

= frac{4x(2x+1)}{(1-2x)(1+2x)}= frac{4x}{1-2x}

b. frac{x^{3}-xy^{2}}{2x^{2}+2xy}

b. Quy đồng mẫu thức nhiều phân thức.

Hoạt động 5 trang 33 sgk Toán 8 tập 1 CD: Cho hai phân thức frac{1}{x^{2}y}frac{1}{xy^{2}}

a. Hãy nhân cả tử và mẫu của phân thức thứ nhất với y và nhân cả tử và mẫu của phân thức thứ hai với x.

b. Nhận xét gì về mẫu của hai phân thức thu được?

Bài giải

a.

+, Nhân cả tử và mẫu của phân thức thứ nhất với y, ta được:

frac{1.y}{x^{2}y.y} = frac{y}{x^{2}y^{2}}

+, Nhân cả tử và mẫu của phân thức thứ hai với x, ta được:

frac{1.x}{xy^{2}.x} = frac{x}{x^{2}y^{2}}

b. Mẫu của hai phân thức thu được là như nhau.

Hoạt động 6 trang 33 sgk Toán 8 tập 1 CD: Tìm MTC của hai phân thức frac{5}{2x+6}frac{3}{x^{2}-9}

Bài giải

Ta có:2x+6 = 2(x+3); x^{2}-9 =(x-3)(x+3)

Vậy MTC của cả 2 phân số là: 2(x+3)(x-3)

Hoạt động 7 trang 33 sgk Toán 8 tập 1 CD: Quy đồng mẫu thức hai phân thức frac{1}{x^{2}+x} và frac{1}{x^{2}-x}

Bài giải

Ta có:

x^{2}+x = x(x+1) ; x^{2}-x = x(x-1).

Vậy MTC của hai phân số là: x(x-1)(x+1).

Ta nhân cả tử và mẫu của phân thức thứ nhất với (x-1); nhân cả tử và mẫu của phân thức thứ hai với (x+1), ta được:

frac{1}{x^{2}+x} = frac{1(x-1)}{(x^{2}+x)(x-1)}

= frac{x-1}{x(x+1)(x-1)};

frac{1}{x^{2}-x} = frac{1.(x+1)}{(x^{2}-x)(x+1)}

= frac{x+1}{x(x-1)(x+1)}

Luyện tập 5 trang 34 sgk Toán 8 tập 1 CD: Quy đồng mẫu thức các phân thức trong mỗi trường hợp sau:

a. frac{5}{2x^{2}y^{3}} và frac{3}{xy^{4}}

b. frac{3}{2x^{2}-10x}  và frac{2}{x^{2}-25}

Bài giải

a. Ta có:

2x^{2}y^{3} = xy^{3}.2x; xy^{4}=xy^{3}.y => MTC là xy^{3}.2x.y = 2x^{2}y^{4}

Để quy đồng phân thức thứ nhất, ta nhân cả tử và mẫu với y; quy đồng phân thức thứ hai, ta nhân cả tử và mẫu với 2x.

Ta được:

frac{5}{2x^{2}y^{3}} = frac{5.y}{2x^{2}y^{3}.y}

= frac{5.y}{xy^{3}.2x.y} = frac{5y}{2x^{2}y^{4}};

frac{3}{xy^{4}} = frac{3.2x}{xy^{4}.2x}

= frac{6x}{xy^{4}.2x} = frac{6x}{2x^{2}y^{4}}

b. Ta có:

2x^{2}-10x =2x(x-5); x^{2}-25=x^{2}-5^{2}=(x-5)(x+5)=> MTC là 2x(x-5)(x+5).

Để quy đồng phân thức thứ nhất, ta nhân cả tử và mẫu với (x+5); quy đồng phân thức thứ hai, ta nhân cả tử và mẫu với 2x.

Ta được:

frac{3}{2x^{2}-10x} = frac{3.(x+5)}{2x(x-5)(x+5)}

= frac{3x+15}{2x(x-5)(x+5)};

frac{2}{x^{2}-25} = frac{2.2x}{(x^{2}-25).2x}

= frac{4x}{2x(x-5)(x+5)}.

III. Điều kiện xác định giá trị của phân thức

Hoạt động 8 trang 34 sgk Toán 8 tập 1 CD: Cho phân thức frac{2x^{2}-x+1}{x-2} . Tìm giá trị của x sao cho mẫu x-2 neq 0.

Bài giải

Để mẫu x-2  neq 0 thì x neq 2

Hoạt động 9 trang 35 sgk Toán 8 tập 1 CD: Tính giá trị của biểu thức frac{x+2}{x-1} tại x=2

Bài giải

Tại x=2 thì x-1 ≠ 0 nên giá trị của biểu thức frac{x+2}{x-1}

Luyện tập 6 trang 36 sgk Toán 8 tập 1 CD: Cho phân thức frac{x+1}{x^{2}+x}

a. Viết điều kiện xác định của phân thức.

b. Tính giá trị của phân thức tại x=10 và x=-1

Bài giải

a. Điều kiện xác định của phân thức: x^{2}+xneq 0 Leftrightarrow x(x+1)neq 0

Leftrightarrow  x neq  0  và x neq  -1

b. Khi x=10 thỏa mãn điều kiện xác định của phân thức nên giá trị của phân thức tại x=10 là

frac{10+1}{10^{2}+10} = frac{11}{110}=frac{1}{10}.

x=-1  không thỏa mãn điều kiện xác định của phân thức nên tại x=-1, giá trị của phân thức không xác định.

IV. Bài tập

Bài tập 1 trang 37 sgk Toán 8 tập 1 CD: Tìm điều kiện xác định của mỗi phân thức sau:

a. frac{y}{3y+3}

b. frac{4x}{x^{2}+16}

c. frac{x+y}{x-y}

Bài giải

a. Điều kiện xác định của phân thức frac{y}{3y+3} là 3y+3 neq  0

b. Điều kiện xác định của phân thức frac{4x}{x^{2}+16}x^{2}+16 neq  0

c. Điều kiện xác định của phân thức frac{x+y}{x-y} là x-y ≠ 0

Bài tập 2 trang 37 sgk Toán 8 tập 1 CD: Dùng định nghĩa hai phân thức bằng nhau chứng tỏ rằng:

a. frac{3x}{2}=frac{15xy}{10y}

b. frac{3x-3y}{2y-2x}=frac{-3}{2}

c. frac{x^{2}-x+1}{x}=frac{x^{3}+1}{x(x+1)}

Bài giải

a. Ta có: 3x.10y = 2.15xy = 30xy nên frac{3x}{2}=frac{15xy}{10y} (đpcm)

b. Ta có: (3x-3y).2=6x-6y; -3(2y-2x)=-6y+6x =>(3x-3y).2=-3(2y-2x)

nên frac{3x-3y}{2y-2x}=frac{-3}{2} (đpcm)

c. Ta có:

frac{x^{3}+1}{x(x+1)} = frac{(x+1)(x^{2}-x+1)}{x(x+1)} = frac{x^{2}-x+1}{x} (đpcm)

Bài tập 3 trang 37 sgk Toán 8 tập 1 CD: Rút gọn mỗi phân thức sau:

a. frac{24x^{2}y^{2}}{16xy^{3}}

b. frac{6x-2y}{9x^{2}-y^{2}}

Bài giải

a. frac{24x^{2}y^{2}}{16xy^{3}}

b. frac{6x-2y}{9x^{2}-y^{2}}

Bài tập 4 trang 37 sgk Toán 8 tập 1 CD: Quy đồng mẫu thức các phân thức trong mỗi trường hợp sau:

a. frac{2}{x-3y} và frac{3}{x+3y}

b. frac{7}{4x+24} và frac{13}{x^{2}-36}

Bài giải

a. frac{2}{x-3y} = frac{2(x+3y)}{(x-3y)(x+3y)} = frac{2x+6y}{x^{2}-(3y)^{2}}

frac{3}{x+3y} = frac{3.(x-3y)}{(x+3y)(x-3y)} = frac{3x-9y}{x^{2}-(3y)^{2}}

b. Ta có:

4x+24 = 4(x+6); x^{2}-36 = x^{2}-6^{2} = (x-6)(x+6)

=> MTC là 4(x+6)(x-6)

frac{7}{4x+24} = frac{7(x-6)}{(4x+24)(x-6)} = frac{7x-42}{4(x+6)(x-6)}

frac{13}{x^{2}-36} = frac{13.4}{(x^{2}-36).4} = frac{52}{4(x+6)(x-6)}

Bài tập 5 trang 37 sgk Toán 8 tập 1 CD: Cho hình chữ nhật ABCD và MNPQ như Hình 1 (các số đo trên hình tính theo đơn vị centimét).

a) Viết phân thức biểu thị tỉ số diện tích của hình chữ nhật ABCD và hình chữ nhật MNPQ.

b) Tính giá trị của phân thức đó tại x = 2 và tại x=5.

Giải bài tập 5 trang 37 sgk Toán 8 tập 1 CD

Bài giải

a. Diện tích của hình chữ nhật MNPQ là: x(x+1)

Diện tích của hình chữ nhật ABCD là: (x+1)(x+3)

=> Phân thức biểu thị tỉ số diện tích của hình chữ nhật ABCD và hình chữ nhật MNPQ là:

frac{x(x+1)}{(x+1)(x+3)}=frac{x}{x+3}

b. Tại x=2 thì x+3 khác 0 nên thỏa mãn điều kiện xác định của phân thức. Lúc đó giá trị của phân thức là:

frac{x}{x+3} = frac{2}{2+3} = frac{2}{5}.

Tại x=5 thì x+3 khác 0 nên thỏa mãn điều kiện xác định của phân thức. Lúc đó giá trị của phân thức là:

frac{x}{x+3} = frac{5}{5+3} = frac{5}{8}.

————————————-

Trên đây, TaiLieuViet đã gửi tới các bạn Giải Toán 8 bài 1: Phân thức đại số Cánh diều

Bài tiếp theo: Toán 8 Cánh diều bài 2: Phép cộng, phép trừ phân thức đại số

Toán 8 từ năm học 2023 – 2024 trở đi sẽ được giảng dạy theo 3 bộ sách: Chân trời sáng tạo; Kết nối tri thức với cuộc sống và Cánh diều. Việc lựa chọn giảng dạy bộ sách nào sẽ tùy thuộc vào các trường. Để giúp các thầy cô và các em học sinh làm quen với từng bộ sách mới, TaiLieuViet sẽ cung cấp lời giải bài tập sách giáo khoa, sách bài tập, trắc nghiệm toán từng bài và các tài liệu giảng dạy, học tập khác. Mời các bạn tham khảo qua đường link bên dưới:

  • Toán 8 Chân trời sáng tạo
  • Toán 8 Kết nối tri thức
  • Toán 8 Cánh diều