Giải Toán 7 Bài 6: Tính chất ba đường trung trực của tam giáctổng hợp câu hỏi và lời giải cho các câu hỏi trong SGK Toán 7 Chân trời sáng tạo tập 2. Bài tập Toán 7 với lời giải chi tiết, rõ ràng dễ hiểu, tương ứng với từng bài học trong sách, giúp các bạn học sinh củng cố kiến thức, rèn luyện kỹ năng giải môn Toán lớp 7 hiệu quả. Mời các bạn tham khảo.
Mục Lục
ToggleKhám phá 1 trang 71 Toán 7 tập 2 CTST
Cho tam giác ABC, em hãy dùng thước kẻ và compa vẽ đường trung trực xy của cạnh BC.
Hướng dẫn giải
Để vẽ đường trung trực xy của cạnh BC ta làm như sau:
Bước 1. Xác định trung điểm của cạnh BC.
Bước 2. Qua trung điểm của cạnh BC, vẽ đường thẳng vuông góc với BC.
Bước 3. Khi đó đường thẳng vừa vẽ là đường thẳng xy.
Ta có hình vẽ sau:
Thực hành 1 trang 71 Toán 7 tập 2 CTST
Cho tam giác nhọn ABC có M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB. Vẽ ba đường trung trực của tam giác ABC.
Hướng dẫn giải
Qua M vẽ đường thẳng vuông góc với BC.
Qua N vẽ đường thẳng vuông góc với CA.
Qua P vẽ đường thẳng vuông góc với AB.
Khi đó ta thu được ba đường trung trực của tam giác ABC.
Ta có hình vẽ sau:
Vận dụng 1 trang 71 Toán 7 tập 2 CTST
Vẽ ba đường trung trực của tam giác ABC vuông tại A.
Hướng dẫn giải
Xác định ba điểm M, N, P lần lượt là trung điểm các cạnh BC, CA, AB.
Qua M vẽ đường thẳng vuông góc với BC.
Qua N vẽ đường thẳng vuông góc với CA.
Qua P vẽ đường thẳng vuông góc với AB.
Khi đó ta thu được ba đường trung trực của tam giác ABC.
Ta có hình vẽ sau:
Khám phá 2 trang 71 Toán 7 tập 2 CTST
Gọi O là giao điểm của hai đường trung trực ứng với cạnh AB, AC của tam giác ABC (Hình 2).
Hướng dẫn giải
– Do O nằm trên đường trung trực của AB nên OA = OB.
Do O nằm trên đường trung trực của AC nên OB = OC.
Do đó OA = OB = OC.
– Do OB = OC nên O nằm trên đường trung trực của BC.
Do đó đường trung trực ứng với cạnh BC đi qua điểm O.
Thực hành 2 trang 72 Toán 7 tập 2 CTST
Gọi O là giao điểm của ba đường trung trực của tam giác ABC (Hình 4). Hãy dùng compa vẽ đường tròn tâm O bán kính OA và cho biết đường tròn này có đi qua hai điểm B và C hay không.
Hướng dẫn giải
Bước 1. Vẽ tam giác ABC.
Bước 2. Lần lượt chọn trung điểm của các cạnh AB, BC, CA.
Bước 3. Qua trung điểm của cạnh AB, kẻ đường thẳng vuông góc với AB.
Qua trung điểm của cạnh BC, kẻ đường thẳng vuông góc với BC.
Qua trung điểm của cạnh CA, kẻ đường thẳng vuông góc với CA.
Khi đó ta có hình vẽ sau:
Ta thấy đường tròn tâm O bán kính OA đi qua hai điểm B và C.
Vận dụng 2 trang 72 Toán 7 tập 2 CTST
Trên bản đồ quy hoạch một khu dân cư có ba điểm dân cư A, B, C (Hình 5). Tìm địa điểm M để xây một trường học sao cho trường học này cách đều ba điểm dân cư đó.
Hướng dẫn giải
Ba điểm dân cư A, B, C tạo thành ba đỉnh của tam giác ABC.
Do M cách đều ba điểm dân cư nên MA = MB = MC.
Do MA = MB nên M nằm trên đường trung trực của AB.
Do MB = MC nên M nằm trên đường trung trực của BC.
Do đó M là giao điểm ba đường trung trực của tam giác ABC.
Vậy M là giao điểm ba đường trung trực của tam giác ABC với các đỉnh là các điểm dân cư A, B, C.
Bài 1 trang 72 Toán 7 tập 2 CTST
Vẽ ba tam giác nhọn, vuông, tù
a) Xác định điểm O cách đều 3 đỉnh của mỗi tam giác.
b) Nêu nhận xét của em về vị trí điểm O trong mỗi trường hợp.
Hướng dẫn giải:
a) Tam giác vuông:
Tam giác nhọn:
Tam giác tù:
b)
- Trong tam giác vuông: điểm O nằm trên cạnh huyền BC.
- Trong tam giác nhọn: O nằm trong tam giác ABC.
- Trong tam giác tù: O nằm ngoài tam giác ABC.
Bài 2 trang 72 Toán 7 tập 2 CTST
Cho tam giác nhọn ABC. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC, CA và cho O là điểm cách đều ba đỉnh của tam giác ABC. Chứng minh rằng MO vuông góc với AB, NO vuông góc với BC và PO vuông góc với AC.
Hướng dẫn giải:
Xét ∆ MOB và ∆ MOA có:
MO chung
OB = OA
MB = MA ( M là trung điểm của AB )
=> ∆ MOB = ∆ MOA (c.c.c)
Mà
=> OM ⊥ MB hay OM ⊥ AB
Tương tự ta có: ON ⊥ NB hay ON ⊥ BC
=> O là giao điểm của 2 đường trung trực OM và ON
mà P là trung điểm của AC
=> OP là đường trung trực của AC
=> OP ⊥ AC.
Bài 3 trang 72 Toán 7 tập 2 CTST
Người ta muốn phục chế lại đĩa cổ hình tròn bị vỡ chỉ còn lại một mảnh (hình 6). Làm thế nào để xác định bán kính bị vỡ của đĩa cổ này?
Hướng dẫn giải:
Lấy 3 điểm A, B, C bất kì thuộc cung tròn.
Xét tam giác ABC
Kẻ 2 đường trung trực của cạnh AB và BC. 2 đường trung trực cắt nhau tại điểm O
=> OA = OB = OC
=> O là tâm đường tròn qua ba điểm A, B, C.
=> OA, OB, OC là bán kính.
Vậy xác định được bán kính của đĩa cổ nãy là OA, OB, OC.
…………………
Trên đây TaiLieuViet đã gửi tới các bạn tài liệu Giải Toán 7 Bài 6: Tính chất ba đường trung trực của tam giác. Để có thể học tốt Toán 7, các em học sinh cần nắm vững lý thuyết, cũng như luyện tập giải toán để nâng cao kỹ năng giải bài tập và làm quen với nhiều dạng Toán khác nhau. Chuyên mục Giải bài tập Toán 7 được giới thiệu trên TaiLieuViet bao gồm đáp án và hướng dẫn giải chi tiết cho từng câu hỏi trong SGK Toán 7, giúp các em làm quen với các dạng toán cơ bản, từ đó có thể vận dụng để làm các dạng toán nâng cao. Chúc các em học tốt.
Ngoài tài liệu Giải Toán 7 Chân trời sáng tạo, TaiLieuViet cũng đã biên soạn lời giải cho các môn học khác như Toán 7, Ngữ văn 7, Lịch sử 7, … mời các bạn tham khảo để có sự chuẩn bị tốt cho chương trình học sách mới sắp tới nhé.
Bài tiếp theo: Giải Toán 7 Bài 7: Tính chất ba đường trung tuyến của tam giác.
Related posts
Tài liệu nổi bật
Categories
- Âm Nhạc – Mỹ Thuật Lớp 9 (17)
- Âm nhạc lớp 6 – KNTT (31)
- Âm Nhạc Lớp 7- CTST (23)
- Bài tập Toán 9 (8)
- Chưa phân loại (32)
- Chuyên đề Hóa học 12 (196)
- Chuyên đề Sinh học lớp 12 (61)
- Chuyên đề Toán 9 (50)
- Công Nghệ Lớp 10- CD (58)
- Công Nghệ Lớp 10- KNTT (52)
- Công nghệ Lớp 11 – KNTT (22)
- Công Nghệ Lớp 6 – CTST (15)
- Công Nghệ Lớp 6 – KNTT (16)
- Công Nghệ Lớp 7- CTST (18)
- Công Nghệ Lớp 7- KNTT (19)
- Công nghệ Lớp 8 – CD (21)
- Công nghệ Lớp 8 – CTST (18)
- Công nghệ Lớp 8 – KNTT (7)
- Công Nghệ Lớp 9 (114)
- Đề thi học kì 2 lớp 9 môn Văn (35)
- Địa Lí Lớp 10- CD (99)
- Địa Lí Lớp 10- KNTT (77)
- Địa lí Lớp 11 – CD (31)
- Địa lí Lớp 11 – CTST (23)
- Địa lí Lớp 11 – KNTT (19)
- Địa Lí Lớp 12 (134)
- Địa lí Lớp 6 – CTST (36)
- Địa lí Lớp 6 – KNTT (30)
- Địa Lí Lớp 7- CTST (22)
- Địa Lí Lớp 7- KNTT (19)
- Địa Lí Lớp 9 (290)
- GDCD 12 (28)
- GDCD Lớp 6 – CTST (8)
- GDCD Lớp 6 – KNTT (12)
- GDCD Lớp 9 (94)
- Giải bài tập Địa Lí 12 (12)
- Giải bài tập SGK Toán 12 (8)
- Giải bài tập Sinh học 12 (45)
- Giải SBT Hóa học 12 (71)
- Giải vở BT Văn 9 (122)
- Giáo Dục Công Dân Lớp 7- CTST (12)
- Giáo Dục Công Dân Lớp 7- KNTT (10)
- Giáo dục công dân Lớp 8 – CD (10)
- Giáo dục công dân Lớp 8 – CTST (10)
- Giáo dục công dân Lớp 8 – KNTT (10)
- Giáo Dục Quốc Phòng Lớp 10- CD (12)
- Giáo Dục Quốc Phòng Lớp 10- KNTT (12)
- Hóa Học Lớp 10- CD (30)
- Hóa Học Lớp 10- KNTT (61)
- Hoá Học Lớp 11 – CD (19)
- Hoá học Lớp 11 – CTST (19)
- Hoá học Lớp 11 – KNTT (25)
- Hóa Học Lớp 12 (130)
- Hóa Học Lớp 9 (717)
- Hoạt Động Trải Nghiệm Lớp 10- KNTT (52)
- Hoạt Động Trải Nghiệm Lớp 7- CTST (40)
- Hoạt Động Trải Nghiệm Lớp 7- KNTT (16)
- Hoạt động trải nghiệm Lớp 8 – CD (19)
- Hoạt động trải nghiệm Lớp 8 – CTST (9)
- Hoạt động trải nghiệm Lớp 8 – KNTT (18)
- Khoa học tự nhiên Lớp 6 – CTST (46)
- Khoa học tự nhiên Lớp 6 – KNTT (57)
- Khoa Học Tự Nhiên Lớp 7- CTST (51)
- Khoa học tự nhiên Lớp 8 – CD (51)
- Khoa học tự nhiên Lớp 8 – CTST (33)
- Khoa học tự nhiên Lớp 8 – KNTT (37)
- Kinh Tế & Pháp Luật Lớp 10 – CD (21)
- Kinh tế & Pháp luật Lớp 11 – CD (21)
- Kinh tế & Pháp luật Lớp 11 – CTST (11)
- Kinh tế & Pháp luật Lớp 11 – KNTT (11)
- Lịch Sử Lớp 10- CD (34)
- Lịch Sử Lớp 10- CTST (20)
- Lịch Sử Lớp 10- KNTT (42)
- Lịch sử Lớp 11 – CTST (13)
- Lịch sử Lớp 11 – KNTT (13)
- Lịch sử Lớp 6 – CTST (21)
- Lịch sử Lớp 6 – KNTT (22)
- Lịch Sử Lớp 7- CTST (19)
- Lịch sử lớp 7- KNTT (18)
- Lịch Sử Lớp 9 (148)
- Lịch sử và Địa lí Lớp 8 – CTST (40)
- Lịch sử và Địa lí Lớp 8 – KNTT (33)
- Lý thuyết Địa lý 12 (4)
- Lý thuyết Lịch sử lớp 9 (33)
- Lý thuyết Ngữ Văn (83)
- Lý thuyết Ngữ Văn 12 (18)
- Lý thuyết Sinh học 12 (41)
- Mở bài – Kết bài hay (55)
- Mở bài lớp 12 hay (24)
- Nghị luận xã hội (34)
- Ngữ Văn Lớp 10- CD (113)
- Ngữ Văn Lớp 10- CTST (79)
- Ngữ Văn Lớp 10- KNTT (198)
- Ngữ Văn Lớp 11 – CD (51)
- Ngữ văn Lớp 11 – CTST (89)
- Ngữ Văn Lớp 11 – KNTT (107)
- Ngữ Văn Lớp 12 (379)
- Ngữ Văn Lớp 6 – KNTT (293)
- Ngữ Văn Lớp 7- CTST (103)
- Ngữ Văn Lớp 7- KNTT (66)
- Ngữ văn Lớp 8 – CD (48)
- Ngữ văn Lớp 8 – CTST (123)
- Ngữ văn Lớp 8 – KNTT (196)
- Ngữ Văn Lớp 9 (28)
- Phân tích các tác phẩm lớp 12 (12)
- Sinh Học Lớp 10- CD (49)
- Sinh Học Lớp 10- CTST (61)
- Sinh Học Lớp 10- KNTT (71)
- Sinh Học Lớp 11 – CD (16)
- Sinh học Lớp 11 – CTST (18)
- Sinh học Lớp 11 – KNTT (18)
- Sinh Học Lớp 9 (229)
- Soạn Anh 12 mới (86)
- Soạn văn 9 (50)
- SOẠN VĂN 9 BÀI 1 (50)
- SOẠN VĂN 9 BÀI 2 (50)
- Tác giả – Tác phẩm (41)
- Tác giả – Tác phẩm Ngữ Văn 12 (13)
- Thi THPT QG môn Địa lý (12)
- Thi THPT QG môn Sinh (8)
- Tiếng Anh Lớp 10 Friends Global (57)
- Tiếng Anh Lớp 10 Global Success (604)
- Tiếng Anh Lớp 10 iLearn Smart World (98)
- Tiếng anh Lớp 11 Friends Global (171)
- Tiếng anh Lớp 11 Global Success (368)
- Tiếng anh Lớp 11 iLearn Smart World (104)
- Tiếng Anh Lớp 12 cũ (168)
- Tiếng Anh Lớp 6 Friends Plus (114)
- Tiếng Anh Lớp 6 Global Success (174)
- Tiếng Anh Lớp 7 Friends Plus (160)
- Tiếng Anh Lớp 8 Friends plus (71)
- Tiếng anh Lớp 8 Global Success (79)
- Tiếng anh Lớp 8 iLearn Smart World (40)
- Tiếng Anh Lớp 9 Mới (211)
- Tin Học Lớp 10- CD (24)
- Tin Học Lớp 10- KNTT (33)
- Tin học Lớp 11 – KNTT (21)
- Tin Học Lớp 6 – CTST (41)
- Tin Học Lớp 6- KNTT (17)
- Tin Học Lớp 7- CTST (14)
- Tin Học Lớp 7- KNTT (16)
- Tin học Lớp 8 – CD (36)
- Tin học Lớp 8 – CTST (10)
- Tin học Lớp 8 – KNTT (5)
- Tin Học Lớp 9 (21)
- Toán 10 sách Chân trời sáng tạo (42)
- Toán Lớp 1 – KNTT (1)
- Toán Lớp 10- CD (44)
- Toán Lớp 10- CTST (39)
- Toán Lớp 10- KNTT (161)
- Toán Lớp 11 – CD (19)
- Toán Lớp 11 – CTST (44)
- Toán Lớp 11 – KNTT (46)
- Toán Lớp 12 (123)
- Toán Lớp 6 – CTST (62)
- Toán Lớp 6 – KNTT (102)
- Toán Lớp 7- CTST (52)
- Toán Lớp 7- KNTT (74)
- Toán Lớp 8 – CD (23)
- Toán Lớp 8 – CTST (21)
- Toán Lớp 8 – KNTT (34)
- Toán Lớp 9 (194)
- Tóm tắt Ngữ văn (16)
- Trắc nghiệm Ngữ Văn (75)
- Trắc nghiệm Toán 9 (61)
- Trải nghiệm hướng nghiệp Lớp 11 – KNTT (8)
- Văn mẫu 12 phân tích chuyên sâu (12)
- Văn mẫu 9 (273)
- Vật Lí Lớp 10- CD (39)
- Vật Lí Lớp 10- KNTT (61)
- Vật Lí Lớp 11 – CD (18)
- Vật lí Lớp 11 – CTST (20)
- Vật lí Lớp 11 – KNTT (26)
- Vật Lý Lớp 9 (217)