TaiLieuViet.vn xin gửi tới bạn đọc bài viết Toán 11 Kết nối tri thức bài 16: Giới hạn của hàm số để bạn đọc cùng tham khảo và có thêm tài liệu giải sgk Toán 11 Kết nối tri thức nhé. Mời các bạn cùng theo dõi bài viết dưới đây.

Bài 5.7 trang 118 SGK Toán 11 Kết nối tri thức

Cho hai hàm số f(x)=frac{x^{2}-1}{x-1} và g(x) = x + 1. Khẳng định nào sau đây là đúng?

a) f(x) = g(x)

b) underset{xrightarrow 1}{lim}f(x)=underset{xrightarrow 1}{lim}g(x)

Lời giải

Ta có:

– tập xác định của f(x): D = R {1}

– tập xác định của g(x): R

underset{xrightarrow 1}{lim}f(x)=2

underset{xrightarrow 1}{lim}g(x)=2

Vậy khẳng định b đúng

Bài 5.8 trang 118 SGK Toán 11 Kết nối tri thức

Tính các giới hạn sau:

a) underset{xrightarrow 0}{lim}frac{(x+2)^{2}-4}{x}

b) underset{xrightarrow 0}{lim}frac{sqrt{x^{2}+9}-3}{x^{2}}

Lời giải

a) underset{xrightarrow 0}{lim}frac{(x+2)^{2}-4}{x}

b) underset{xrightarrow 0}{lim}frac{sqrt{x^{2}+9}-3}{x^{2}}

Bài 5.9 trang 118 SGK Toán 11 Kết nối tri thức

Cho hàm số H(t) = left{begin{matrix} 0 nếu t < 0 \ 1 nếu t geq 0 end{matrix}right.. (hàm Heaviside, thường được dùng để mô tả việc chuyển trạng thái tắt/ mở của dòng điện tại thời điểm t = 0)

Tính underset{trightarrow 0^{+}}{lim}H(t)underset{trightarrow 0^{-}}{lim}H(t)

Lời giải

underset{trightarrow 0^{+}}{lim}H(t)

underset{trightarrow 0^{+}}{lim}H(t)

Bài 5.10 trang 118 SGK Toán 11 Kết nối tri thức

Tính các giới hạn một bên:

a) underset{trightarrow 1^{+}}{lim}frac{x-2}{x-1}

b) underset{trightarrow 4^{-}}{lim}frac{x^{2}-x+1}{4-x}

Lời giải

a) underset{trightarrow 1^{+}}{lim}(x-2)=-1<0

underset{trightarrow 1^{+}}{lim}(x-1)>0

Rightarrow underset{trightarrow 4^{-}}{lim}frac{x^{2}-x+1}{4-x}=+infty

Bài 5.11 trang 118 SGK Toán 11 Kết nối tri thức

Cho hàm số g(x)=frac{x^{2}-5x+6}{|x-2|}

Tìm underset{trightarrow 2^{+}}{lim}g(x)underset{trightarrow 2^{-}}{lim}g(x)

Lời giải

Khi xrightarrow 2^{-}Rightarrow |x-2|=2-x

Ta có: underset{xrightarrow 2^{-}}{lim}frac{x^{2}-5x+6}{|x-2|}=underset{xrightarrow 2^{-}}{lim}frac{x^{2}-5x+6}{2-x}=underset{xrightarrow 2^{-}}{lim}frac{(x-2)(x-3)}{-(x-2)}=underset{xrightarrow 2^{-}}{lim}[-(x-3)]=3-2=1

Khi xrightarrow 2^{+}Rightarrow |x-2|=x-2

Ta có:

underset{xrightarrow 2^{+}}{lim}frac{x^{2}-5x+6}{|x-2|}=underset{xrightarrow 2^{+}}{lim}frac{x^{2}-5x+6}{x-2}=underset{xrightarrow 2^{+}}{lim}frac{(x-2)(x-3)}{x-2}=underset{xrightarrow 2^{-}}{lim}[x-3]=2-3=-1

Bài 5.12 trang 118 SGK Toán 11 Kết nối tri thức

Tính các giới hạn sau:

a) underset{xrightarrow +infty }{lim}frac{1-2x}{sqrt{x^{2}+1}}

b) underset{xrightarrow +infty }{lim}(sqrt{x^{2}+x+2}-x)

Lời giải

a) underset{xrightarrow +infty }{lim}frac{1-2x}{sqrt{x^{2}+1}}

b)

underset{xrightarrow +infty }{lim}(sqrt{x^{2}+x+2}-x)

Bài 5.13 trang 118 SGK Toán 11 Kết nối tri thức

Cho hàm số f(x)=frac{2}{(x-1)(x-2)}

Tìm underset{xrightarrow 2^{+} }{lim}f(x) và underset{xrightarrow 2^{-} }{lim}f(x)

Lời giải

Khi xrightarrow 2^{+}Rightarrow (x-1)(x-2)>0

Rightarrow underset{xrightarrow 2^{+}}{lim}frac{2}{(x-1)(x-2)}=+infty

Khi xrightarrow 2^{-}Rightarrow (x-1)(x-2)<0

Rightarrow underset{xrightarrow 2^{-}}{lim}frac{2}{(x-1)(x-2)}=-infty

——————————

  • Toán 11 Kết nối tri thức bài 17

TaiLieuViet.vn vừa gửi tới bạn đọc bài viết Toán 11 Kết nối tri thức bài 16: Giới hạn của hàm số. Hi vọng qua bài viết này bạn đọc có thêm tài liệu để học tập tốt hơn môn Toán 11 Kết nối tri thức. Mời các bạn cùng tham khảo thêm tại mục Ngữ văn 11 Kết nối tri thức.