Toán 11 Kết nối tri thức bài 1: Giá trị lượng giác của góc lượng giác được TaiLieuViet.vn tổng hợp và xin gửi tới bạn đọc cùng tham khảo để có thêm tài liệu giải bài tập Toán 11 Kết nối tri thức nhé. Mời bạn đọc cùng theo dõi.

Bài 1.1 trang 16 SGK Toán 11 Kết nối tri thức

Hoàn thành bảng sau

Số đo độ

15 ^{circ}

?

0^{circ}

900^{circ}

?

?

Số đo radian

?

frac{3pi }{8}

?

?

-frac{7pi }{12}

-frac{11pi }{8}

Lời giải chi tiết:

Số đo độ

15 ^{circ}

67.5^{circ}

0^{circ}

900^{circ}

-105^{circ}

-247.5^{circ}

Số đo radian

frac{pi }{12}

frac{3pi }{8}

0

5pi

-frac{7pi }{12}

-frac{11pi }{8}

Bài 1.2 trang 16 SGK Toán 11 Kết nối tri thức

Một đường tròn có bán kính 20 cm. Tìm độ dài của các cung trên đường tròn đó có số đo sau:

a) frac{pi }{12}

b) 1.5

c) 35^{circ}

d) 315^{circ}

Lời giải chi tiết:

a) Độ dài cung đường tròn: l=20times frac{pi }{12}=5.236 (cm)

b) Độ dài cung đường tròn: l=20times 1.5=30 (cm)

c) Đổi 35^{circ}

Độ dài cung đường tròn: l=20times frac{7pi }{36}=12.2173 (cm)

d) Đổi 315^{circ}

Độ dài cung đường tròn: l=20times frac{7pi }{4}=109.9557 (cm)

Bài 1.3 trang 16 SGK Toán 11 Kết nối tri thức

Trên đường tròn lượng giác, xác định điểm M biểu diễn các góc lượng giác có số đo sau:

a) frac{2pi }{3}

b) -frac{11pi }{4}

c) 150^{circ}

d) 315^{circ}

Lời giải chi tiết

a) Điểm M trên đường tròn lượng giác biểu diễn góc lượng giác có số đo bằng frac{2pi }{3} được xác định trong hình sau:

Toán 11 Kết nối tri thức bài 1

b) Ta có: -frac{11pi }{4}

Điểm M trên đường tròn lượng giác biểu diễn góc lượng giác có số đo bằng -frac{11pi }{4} được xác định trong hình sau:

Toán 11 Kết nối tri thức bài 1

d) Điểm M trên đường tròn lượng giác biểu diễn góc lượng giác có số đo bằng – 225° được xác định trong hình sau:

Toán 11 Kết nối tri thức bài 1

Bài 1.4 trang 16 SGK Toán 11 Kết nối tri thức

Tính các giá trị lượng giác góc alpha, biết

a) cosalpha =frac{1}{5} và 0<alpha <frac{pi }{2}

b) sinalpha =frac{2}{3} và frac{pi }{2}<alpha <pi

c) tanalpha =sqrt{5} và pi < alpha <frac{3pi }{2}

d) cotalpha =-frac{1}{sqrt{2}} và frac{3pi }{2}<alpha <2pi

Lời giải chi tiết

a) Vì 0 < alpha <frac{pi }{2} nên sin alpha > 0

Mặt khác, từ sin^{2}alpha +cos^{2}alpha =1 suy ra sinalpha =sqrt{1-cos^{2}alpha }=sqrt{1-frac{1}{25}}=frac{2sqrt{6}}{5}

Do đó, tanalpha =frac{sinalpha }{cosalpha }=frac{frac{2sqrt{6}}{5}}{frac{1}{5}}=2sqrt{6} và cotalpha =frac{1}{tanalpha }=frac{1}{2sqrt{6}}

b) Vì frac{pi }{2}<alpha <pi  nên cosalpha<0

Mặt khác, từ sin^{2}alpha +cos^{2}alpha =1

Do đó, tanalpha =frac{sinalpha }{cosalpha }=frac{frac{2}{3}}{-frac{sqrt{5}}{3}}=-frac{2sqrt{5}}{5} và cotalpha =frac{1}{tanalpha }=frac{-sqrt{5}}{2}

c) cotalpha =frac{1}{tanalpha }=frac{1}{2-sqrt{5}}

pi < alpha <frac{3pi }{2} nên cosalpha <0,sinalpha <0

Mặt khác, từ 1+tan^{2}alpha =frac{1}{cos^{2}alpha } suy ra cosalpha =-sqrt{frac{1}{1+tan^{2}alpha }}=-sqrt{frac{1}{1+5}}=-frac{1}{sqrt{6}}

Từ 1+cot^{2}alpha =frac{1}{sin^{2}alpha } suy ra sinalpha =-sqrt{frac{1}{1+cot^{2}alpha }}=-sqrt{frac{1}{1+frac{1}{5}}}=-frac{sqrt{30}}{6}

d) tanalpha =frac{1}{cotalpha }=-sqrt{2}

frac{3pi }{2}<alpha <2pi nên cosalpha >0,sinalpha <0

Mặt khác, từ 1+tan^{2}alpha =frac{1}{cos^{2}alpha } suy ra cosalpha =sqrt{frac{1}{1+tan^{2}alpha }}=sqrt{frac{1}{1+2}}=frac{1}{sqrt{3}}

Từ 1+cot^{2}alpha =frac{1}{sin^{2}alpha } suy ra sinalpha =-sqrt{frac{1}{1+cot^{2}alpha }}=-sqrt{frac{1}{1+frac{1}{2}}}=-frac{sqrt{6}}{3}

Bài 1.5 trang 16 SGK Toán 11 Kết nối tri thức

Chứng minh các đẳng thức:

a) cos^{4}alpha -sin^{4}alpha =2cos^{2}alpha -1

b) frac{cos^{2}alpha +tan^{2}alpha -1}{sin^{2}alpha }=tan^{2}alpha

Lời giải chi tiết

a) cos^{4}alpha -sin^{4}alpha =(cos^{2}alpha +sin^{2}alpha )(cos^{2}alpha -sin^{2}alpha )

=1times (cos^{2}alpha -sin^{2}alpha )=cos^{2}alpha -(1-sin^{2}alpha )=2cos^{2}alpha -1

b) frac{cos^{2}alpha +tan^{2}alpha -1}{sin^{2}alpha }=frac{cos^{2}alpha }{sin^{2}alpha }+frac{tan^{2}alpha }{sin^{2}alpha }-frac{1}{sin^{2}alpha }

=cot^{2}alpha +frac{frac{sin^{2}alpha }{cos^{2}alpha }}{sin^{2}alpha }-(1+cot^{2}alpha )=frac{1}{cos^{2}}-1=tan^{2}alpha

Bài 1.6 trang 16 SGK Toán 11 Kết nối tri thức

Bánh xe của người đi xe đạp quay được 11 vòng trong 5 giây

a) Tính góc (theo độ và radian) mà bánh xe quay được trong 1 giây

b) Tính độ dài quãng đường mà người đi xe đã đi được trong 1 phút, biết rằng đường kính của bánh xe đạp là 680mm

Lời giải chi tiết

a) 1 giây bánh xe quay được số vòng là: 11:5=frac{11}{5} (vòng)

Góc mà bánh xe quay được trong 1 giây: frac{11}{5}times 360^{circ}=792^{circ}=4.4pi (rad)

b) Ta có: 1 phút = 60 giây.

Trong 1 phút bánh xe quay được 60times frac{11}{5}=132 vòng.

Chu vi của bánh xe đạp là: C = 680π (mm).

Quãng đường mà người đi xe đạp đã đi được trong một phút là

680πtimes 132 = 89 760π (mm) = 89,76π (m).

—————————–

  • Toán 11 Kết nối tri thức bài 2

Trên đây TaiLieuViet.vn vừa gửi tới bạn đọc bài viết Toán 11 Kết nối tri thức bài 1: Giá trị lượng giác của góc lượng giác. Hi vọng qua bài viết này bạn đọc có thêm tài liệu học tập tốt hơn môn Toán 11 Kết nối tri thức. Mời các bạn cùng tham khảo thêm mục Ngữ văn 11 Kết nối tri thức.