Mời các bạn tham khảo tài liệu Lý thuyết Toán 12 chương 1: Sự đồng biến, nghịch biến của hàm số do TaiLieuViet tổng hợp và đăng tải sau đây. Tài liệu tóm tắt toàn bộ lý thuyết Giải tích 12 chương 1 giúp các bạn học sinh ghi nhớ kiến thức trọng tâm môn Toán 12 hiệu quả, đồng thời vận dụng để giải bài tập Toán 12 một cách tốt nhất.
Mục Lục
ToggleA. Sự đồng biến, nghịch biến của hàm số
1. Tính đơn điệu của hàm số
– Cho K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y = f(x) xác định trên K. Ta nói
+ Hàm số đồng biến (tăng) trên K nếu mọi cặp x1,x2 thuộc K mà x1 nhỏ hơn x2 thì f(x1) nhỏ hơn f(x2), tức là x1 < x2 => f(x1) < f(x2)
+ Hàm số nghịch biến (giảm) trên K nếu với mọi cặp x1,x2 thuộc K mà x1 < x2 thì f(x1) nhỏ hơn f(x2), tức là x1 < x2 => f(x1) > f(x2)
– Hàm số đồng biến hoặc nghịch biến trên K được gọi chung là đơn điệu trên K, K được gọi chung là khoảng đơn điệu của hàm số.
Nhận xét: Hàm số đồng biến trên K thì đồ thị hàm số đi lên từ trái sang phải. Hàm số nghịch biến trên K thì đồ thị hàm số đi xuống từ trái sang phải.
2. Tính đơn điệu và dấu của đạo hàm
– Giả sử hàm số y = f(x) có đạo hàm trên khoảng (a;b). Khi đó:
+ Nếu f'(x) ≥ 0, ∀x ∈ (a; b) và f'(x) = 0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến trên (a;b).
+ Nếu f'(x) ≤ 0, ∀x ∈ (a; b) và f'(x) = 0 chỉ tại một số hữu hạn điểm thì hàm số nghịch biến trên (a;b).
Ghi chú: Dấu bằng xảy ra chỉ tại một số hữu hạn điểm.
B. Các dạng bài tập xét tính đơn điệu của hàm số
Dạng 1: Xét tính đơn điệu của hàm số lớp 12
Bài toán xét tính đơn điệu của hàm số không hề phức tạp. Học sinh chỉ cần hiểu rõ kiến thức là có thể làm được bài. Vì vậy, trước khi đi sâu vào phương pháp, công thức giải nhanh dạng bài tập này, TaiLieuViet sẽ điểm qua một số kiến thức trọng tâm.
Hàm số y = f(x) xác định trên I, I là một khoảng, một đoạn hay một nửa khoảng.
– Hàm số y = f(x) được gọi là đồng biến trên I nếu:
∀ x1, x2 ∈ I: x1 < x2 ⇔ f(x1) < f(x2).
– Hàm số y = f (x) được gọi là nghịch biến trên I nếu:
∀ x1, x2 ∈ I: x1 < x2 ⇔ f(x1) > f(x2).
Hàm số đồng biến, nghịch biến được gọi chung là hàm số đơn điệu trên I.
Phương pháp giải dạng bài xét tính đơn điệu của hàm số lớp 12
Để giải dạng bài tập này, các bạn cần thực hiện đủ các bước sau:
– Tìm tập xác định D.
– Tìm f'(x). Tìm các điểm mà f'(xi)=0 và f'(xi) không xác định.
– Lập bảng biến thiên.
– Kết luật khoảng đồng biến, nghịch biến.
Ví dụ: Xét hàm số y = f(x) = x³ – 3x + 1.
Tập xác định D = R
Ta có f'(x) = 3x² -3. f'(x) = 0 ⇔ x= 1; hoặc x= -1.
Thay x = -2, f'(x) = 9 >0.
Bảng biến thiên của hàm số
Từ bảng biến thiên kết luận:
– Hàm số đồng biến trên khoảng (- ∞; -1) và (1;+∞)
– Hàm số nghịch biến trên khoảng (-1;1).
Giải bài toán xét tính đơn điệu của hàm số bằng máy tính cầm tay:
Ngoài cách sử dụng bảng biến thiên để giải bài tập xét tính đơn điệu của hàm số lớp 12, học sinh cũng có thể dùng chiếc casio của mình để giải.
Ví dụ: Cho hàm số y = x4 -2×2 + 4. Mệnh đề nào dưới đây là đúng?
A. Hàm số đồng biến trên khoảng (- ∞; -1).
B. Hàm số nghịch biến trên khoảng (- ∞; -1) và (1;+∞).
C. Hàm số nghịch biến trên khoảng (- ∞; -1) và ( 0;1).
D. Hàm số đồng biến trên khoảng (-1;1).
Chúng ta có thể dùng máy tính để xét tính đơn điệu như nhau:
Nhập MODE 7, nhập f(x) = x4 -2×2 + 4 Start?-5 → End?5→ Step?1. Khi đó ta nhận được bảng giá trị.
x | F(x) | x | F(x) |
-5 | 579 | 0 | 4 |
-4 | 228 | 1 | -3 |
-3 | 67 | 2 | 12 |
-2 | 12 | 3 | 67 |
-1 | -3 | 4 | 228 |
5 | 579 |
Từ bảng giá trị ta thấy hàm số nghịch biến trên (- ∞; -1) và (0;1).
Trên đây là ví dụ cơ bản nhất về bài tập xét tính đơn điệu của hàm số lớp 12. Từ phương pháp giải dạng bài tập trên, các em có thể vận dụng giải nhiều bài tập khác.
Dạng 2: Tìm điều kiện của tham số để hàm số đơn điệu
Điều kiện cần để hàm số đơn điệu:
Giả sử hàm số y = f (x) có đạo hàm trên I. Khi đó:
– Nếu hàm số y = f(x) đồng biến trên I thì f'(x) ≥ 0, ∀ x ∈ I.
– Nếu hàm số y = f(x) nghịch biến trên I thì f'(x) ≤ 0, ∀ x ∈ I.
Điều kiện đủ để hàm số đơn điệu:
– Nếu f'(x) > 0 , ∀ x ∈ I thì hàm số f(x) đồng biến trên I.
– Nếu f'(x) < 0 , ∀ x ∈ I thì hàm số f(x) nghịch biến trên I.
– Nếu f'(x) = 0 , ∀ x ∈ I thì hàm số f(x) không đỏi trên khoảng I.
Phương pháp giải:
Hàm số y = ax³ + bx² + cx + d.
Tập xác định: D= R
y’ = 3ax² + 2bx + c
– Để hàm số đồng biến trên R thì y’ ≥ 0, ∀ x ∈ R.
Khi đó: a > 0; Δ ≤ 0.
– Để hàm số nghịch biến trên R thì y’ ≤ 0, ∀ x ∈ R.
Khi đó: a <0; Δ ≤ 0
Hàm số đồng biến trên các khoảng xác định khi và chỉ khi:
y’ >0, ∀ x ∈ D ⇒ ad-bc > 0
Hàm số nghịch biến trên các khoảng xác định khi và chỉ khi.
y’ < 0, ∀ x ∈ D ⇒ ad-bc < 0.
Ví dụ:
Cho hàm số y = mx³ + x +1.
Tập xác định d = R.
y’ = 3mx² +1.
Để hàm số đồng biến trên R thì:
y’≥ 0, ∀ x ∈ R ⇔ 3mx² +1 ≥ 0; ∀ x ∈ R.
⇔ 3m > 0; Δ= -12m ≤ 0 ⇔ m > 0.
Hàm số nghịch biến trên R thì:
y’ ≤ 0, ∀ x ∈ R ⇔ 3mx² +1 ≤ 0; ∀ x ∈ R.
Khi đó a <0; Δ ≤ 0 ⇔ 3m < 0; -12m ≤ 0 ⇔ m ∈ Ø.
Như vậy, TaiLieuViet đã tổng hợp 2 dạng bài tập xét tính đơn điệu của hàm số lớp 12 quan trọng nhất. Các em học sinh cần nắm chắc những kiến thức trên và vận dụng làm bài tập để ghi nhớ.
……………………
Trên đây TaiLieuViet.com vừa giới thiệu tới các bạn Câu hỏi trắc nghiệm môn Toán lớp 12: Sự đồng biến, nghịch biến của hàm số. Chắc hẳn qua bài viết bạn đọc đã nắm được những ý chính cũng như trau dồi được nội dung kiến thức của bài viết rồi đúng không ạ? Bài viết cho chúng ta thấu được lý thuyết của bài về sự đồng biến, nghịch biến của hàm số. Hi vọng qua bài viết này bạn đọc có thêm nhiều tài liệu bổ ích để học tập tốt hơn nhé. Để giúp các bạn có thêm nhiều tài liệu học tập hơn nữa, TaiLieuViet.com mời các bạn tham khảo thêm Giải bài tập Toán lớp 12, Giải Vở BT Toán 12, Trắc nghiệm Toán 12 để học tốt môn Toán lớp 12 và các môn Ngữ văn 12, Tiếng Anh 12, đề thi học kì 1 lớp 12, đề thi học kì 2 lớp 12… để có kiến thức tổng hợp, đầy đủ các môn.
- Giải bài tập trang 9, 10 SGK Giải tích lớp 12: Sự đồng biến, nghịch biến của hàm số
- Trắc nghiệm Toán 12 chương 1: Sự đồng biến, nghịch biến của hàm số
Related posts
Tài liệu nổi bật
Categories
- Âm Nhạc – Mỹ Thuật Lớp 9 (17)
- Âm nhạc lớp 6 – KNTT (31)
- Âm Nhạc Lớp 7- CTST (23)
- Bài tập Toán 9 (8)
- Chưa phân loại (32)
- Chuyên đề Hóa học 12 (196)
- Chuyên đề Sinh học lớp 12 (61)
- Chuyên đề Toán 9 (50)
- Công Nghệ Lớp 10- CD (58)
- Công Nghệ Lớp 10- KNTT (52)
- Công nghệ Lớp 11 – KNTT (22)
- Công Nghệ Lớp 6 – CTST (15)
- Công Nghệ Lớp 6 – KNTT (16)
- Công Nghệ Lớp 7- CTST (18)
- Công Nghệ Lớp 7- KNTT (19)
- Công nghệ Lớp 8 – CD (21)
- Công nghệ Lớp 8 – CTST (18)
- Công nghệ Lớp 8 – KNTT (7)
- Công Nghệ Lớp 9 (114)
- Đề thi học kì 2 lớp 9 môn Văn (35)
- Địa Lí Lớp 10- CD (99)
- Địa Lí Lớp 10- KNTT (77)
- Địa lí Lớp 11 – CD (31)
- Địa lí Lớp 11 – CTST (23)
- Địa lí Lớp 11 – KNTT (19)
- Địa Lí Lớp 12 (134)
- Địa lí Lớp 6 – CTST (36)
- Địa lí Lớp 6 – KNTT (30)
- Địa Lí Lớp 7- CTST (22)
- Địa Lí Lớp 7- KNTT (19)
- Địa Lí Lớp 9 (290)
- GDCD 12 (28)
- GDCD Lớp 6 – CTST (8)
- GDCD Lớp 6 – KNTT (12)
- GDCD Lớp 9 (94)
- Giải bài tập Địa Lí 12 (12)
- Giải bài tập SGK Toán 12 (8)
- Giải bài tập Sinh học 12 (45)
- Giải SBT Hóa học 12 (71)
- Giải vở BT Văn 9 (122)
- Giáo Dục Công Dân Lớp 7- CTST (12)
- Giáo Dục Công Dân Lớp 7- KNTT (10)
- Giáo dục công dân Lớp 8 – CD (10)
- Giáo dục công dân Lớp 8 – CTST (10)
- Giáo dục công dân Lớp 8 – KNTT (10)
- Giáo Dục Quốc Phòng Lớp 10- CD (12)
- Giáo Dục Quốc Phòng Lớp 10- KNTT (12)
- Hóa Học Lớp 10- CD (30)
- Hóa Học Lớp 10- KNTT (61)
- Hoá Học Lớp 11 – CD (19)
- Hoá học Lớp 11 – CTST (19)
- Hoá học Lớp 11 – KNTT (25)
- Hóa Học Lớp 12 (130)
- Hóa Học Lớp 9 (717)
- Hoạt Động Trải Nghiệm Lớp 10- KNTT (52)
- Hoạt Động Trải Nghiệm Lớp 7- CTST (40)
- Hoạt Động Trải Nghiệm Lớp 7- KNTT (16)
- Hoạt động trải nghiệm Lớp 8 – CD (19)
- Hoạt động trải nghiệm Lớp 8 – CTST (9)
- Hoạt động trải nghiệm Lớp 8 – KNTT (18)
- Khoa học tự nhiên Lớp 6 – CTST (46)
- Khoa học tự nhiên Lớp 6 – KNTT (57)
- Khoa Học Tự Nhiên Lớp 7- CTST (51)
- Khoa học tự nhiên Lớp 8 – CD (51)
- Khoa học tự nhiên Lớp 8 – CTST (33)
- Khoa học tự nhiên Lớp 8 – KNTT (37)
- Kinh Tế & Pháp Luật Lớp 10 – CD (21)
- Kinh tế & Pháp luật Lớp 11 – CD (21)
- Kinh tế & Pháp luật Lớp 11 – CTST (11)
- Kinh tế & Pháp luật Lớp 11 – KNTT (11)
- Lịch Sử Lớp 10- CD (34)
- Lịch Sử Lớp 10- CTST (20)
- Lịch Sử Lớp 10- KNTT (42)
- Lịch sử Lớp 11 – CTST (13)
- Lịch sử Lớp 11 – KNTT (13)
- Lịch sử Lớp 6 – CTST (21)
- Lịch sử Lớp 6 – KNTT (22)
- Lịch Sử Lớp 7- CTST (19)
- Lịch sử lớp 7- KNTT (18)
- Lịch Sử Lớp 9 (148)
- Lịch sử và Địa lí Lớp 8 – CTST (40)
- Lịch sử và Địa lí Lớp 8 – KNTT (33)
- Lý thuyết Địa lý 12 (4)
- Lý thuyết Lịch sử lớp 9 (33)
- Lý thuyết Ngữ Văn (83)
- Lý thuyết Ngữ Văn 12 (18)
- Lý thuyết Sinh học 12 (41)
- Mở bài – Kết bài hay (55)
- Mở bài lớp 12 hay (24)
- Nghị luận xã hội (34)
- Ngữ Văn Lớp 10- CD (113)
- Ngữ Văn Lớp 10- CTST (79)
- Ngữ Văn Lớp 10- KNTT (198)
- Ngữ Văn Lớp 11 – CD (51)
- Ngữ văn Lớp 11 – CTST (89)
- Ngữ Văn Lớp 11 – KNTT (107)
- Ngữ Văn Lớp 12 (379)
- Ngữ Văn Lớp 6 – KNTT (293)
- Ngữ Văn Lớp 7- CTST (103)
- Ngữ Văn Lớp 7- KNTT (66)
- Ngữ văn Lớp 8 – CD (48)
- Ngữ văn Lớp 8 – CTST (123)
- Ngữ văn Lớp 8 – KNTT (196)
- Ngữ Văn Lớp 9 (28)
- Phân tích các tác phẩm lớp 12 (12)
- Sinh Học Lớp 10- CD (49)
- Sinh Học Lớp 10- CTST (61)
- Sinh Học Lớp 10- KNTT (71)
- Sinh Học Lớp 11 – CD (16)
- Sinh học Lớp 11 – CTST (18)
- Sinh học Lớp 11 – KNTT (18)
- Sinh Học Lớp 9 (229)
- Soạn Anh 12 mới (86)
- Soạn văn 9 (50)
- SOẠN VĂN 9 BÀI 1 (50)
- SOẠN VĂN 9 BÀI 2 (50)
- Tác giả – Tác phẩm (41)
- Tác giả – Tác phẩm Ngữ Văn 12 (13)
- Thi THPT QG môn Địa lý (12)
- Thi THPT QG môn Sinh (8)
- Tiếng Anh Lớp 10 Friends Global (57)
- Tiếng Anh Lớp 10 Global Success (604)
- Tiếng Anh Lớp 10 iLearn Smart World (98)
- Tiếng anh Lớp 11 Friends Global (171)
- Tiếng anh Lớp 11 Global Success (368)
- Tiếng anh Lớp 11 iLearn Smart World (104)
- Tiếng Anh Lớp 12 cũ (168)
- Tiếng Anh Lớp 6 Friends Plus (114)
- Tiếng Anh Lớp 6 Global Success (174)
- Tiếng Anh Lớp 7 Friends Plus (160)
- Tiếng Anh Lớp 8 Friends plus (71)
- Tiếng anh Lớp 8 Global Success (79)
- Tiếng anh Lớp 8 iLearn Smart World (40)
- Tiếng Anh Lớp 9 Mới (211)
- Tin Học Lớp 10- CD (24)
- Tin Học Lớp 10- KNTT (33)
- Tin học Lớp 11 – KNTT (21)
- Tin Học Lớp 6 – CTST (41)
- Tin Học Lớp 6- KNTT (17)
- Tin Học Lớp 7- CTST (14)
- Tin Học Lớp 7- KNTT (16)
- Tin học Lớp 8 – CD (36)
- Tin học Lớp 8 – CTST (10)
- Tin học Lớp 8 – KNTT (5)
- Tin Học Lớp 9 (21)
- Toán 10 sách Chân trời sáng tạo (42)
- Toán Lớp 1 – KNTT (1)
- Toán Lớp 10- CD (44)
- Toán Lớp 10- CTST (39)
- Toán Lớp 10- KNTT (161)
- Toán Lớp 11 – CD (19)
- Toán Lớp 11 – CTST (44)
- Toán Lớp 11 – KNTT (46)
- Toán Lớp 12 (123)
- Toán Lớp 6 – CTST (62)
- Toán Lớp 6 – KNTT (102)
- Toán Lớp 7- CTST (52)
- Toán Lớp 7- KNTT (74)
- Toán Lớp 8 – CD (23)
- Toán Lớp 8 – CTST (21)
- Toán Lớp 8 – KNTT (34)
- Toán Lớp 9 (194)
- Tóm tắt Ngữ văn (16)
- Trắc nghiệm Ngữ Văn (75)
- Trắc nghiệm Toán 9 (61)
- Trải nghiệm hướng nghiệp Lớp 11 – KNTT (8)
- Văn mẫu 12 phân tích chuyên sâu (12)
- Văn mẫu 9 (273)
- Vật Lí Lớp 10- CD (39)
- Vật Lí Lớp 10- KNTT (61)
- Vật Lí Lớp 11 – CD (18)
- Vật lí Lớp 11 – CTST (20)
- Vật lí Lớp 11 – KNTT (26)
- Vật Lý Lớp 9 (217)