TaiLieuViet xin trân trọng giới thiệu bài Lý thuyết Toán lớp 10 bài 3: Các phép toán trên tập hợp được chúng tôi sưu tầm và tổng hợp các câu hỏi lí thuyết và trắc nghiệm có đáp án đi kèm nằm trong chương trình giảng dạy môn Toán lớp 10 sách CTST. Mời quý thầy cô cùng các bạn tham khảo tài liệu dưới đây.
Mục Lục
ToggleA. Lý thuyết Toán 10 bài 3
1. Hợp và giao của các tập hợp
– Cho hai tập hợp A và B.
Tập hợp các phần tử thuộc A hoặc thuộc B gọi là hợp của hai tập hợp A và B, kí hiệu A ∪ B.
A ∪ B = {x| x ∈ A hoặc x ∈ B}.
Tập hợp các phần tử thuộc cả hai tập hợp A và B gọi là giao của hai tập hợp A và B, kí hiệu A ∩ B.
A ∩ B = {x | x ∈ A và x ∈ B}.
Nhận xét:
+ Nếu A và B là hai tập hợp hữu hạn thì n(A ∪ B) = n(A) + n(B) – n(A ∩ B).
+ Đặc biệt, nếu A và B không có phần tử chung, tức A ∩ B = ∅, thì n(A ∪ B) = n(A) + n(B).
Ví dụ 1.
a) Cho hai tập hợp S = {1; 2; 3; 4} và T = {5; 6; 7}. Hãy xác định N = S ∪ T.
b) Cho hai tập hợp A = {x ∈ ℝ| (2x – x2)(2x2 – 3x – 2) = 0} và B = {n ∈ ℕ| 3 < n2 < 30}. Hãy xác định A ∩ B.
Hướng dẫn giải
a) Hợp của hai tập hợp S và T là tập hợp N = S ∪ T = {1; 2; 3; 4; 5; 6; 7}.
b) Xét tập hợp A = {x ∈ ℝ| (2x – x2)(2x2 – 3x – 2) = 0} ta có (2x – x2)(2x2 – 3x – 2) = 0
Xét tập hợp B = {n ∈ ℕ| 3 < n2 < 30} = {2; 3; 4; 5}.
Do đó A ∩ B = {2}.
2. Hiệu của hai tập hợp, phần bù của tập con
– Cho hai tập hợp A và B.
Tập hợp các phần tử thuộc A nhưng không thuộc B gọi là hiệu của A và B, kí hiệu AB.
AB = {x | x ∈ A và x ∉ B}.
Nếu A là tập con của E thì hiệu EA gọi là phần bù của A trong E, kí hiệu CEA.
Chú ý: Trong các chương sau, để tìm các tập hợp là hợp, giao, hiệu, phần bù của những tập con của tập số thực, ta thường vẽ sơ đồ trên trục số.
Ví dụ 2. Cho hai tập hợp S = {2; 3; 4; 5; 6; 7; 8; 9} và T = {4; 5; 6; 7}.
Hãy xác định ST và CST.
Hướng dẫn giải
Hiệu của S và T là ST = {2; 3; 8; 9}.
Ta thấy T là tập con của S nên phần bù của T trong S chính là:
CST = ST = {2; 3; 8; 9}.
Hướng dẫn giải
a) Để xác định tập hợp A, ta vẽ sơ đồ sau đây:
Từ sơ đồ, ta thấy A = (1; 3].
b) Để xác định tập hợp B, ta vẽ sơ đồ sau đây:
Từ sơ đồ, ta thấy B = (‒∞; 12].
B. Bài tập Toán 10 bài 3
1. Bài tập trắc nghiệm
Câu 1. Cho A = {(x; y)| x, y ∈ ℝ, 3x – y = 7}, B = {(x; y)| x, y ∈ ℝ, x – y = 1}.
Tập hợp A ∩ B là:
A. {(3; 2)};
B. {3}, {2};
C. {3; 2};
D. ∅.
Hướng dẫn giải
Đáp án đúng là: A
Tập hợp A ∩ B là tập hợp cặp số (x; y) thỏa mãn hệ phương trình:
Vậy A ∩ B = {(3; 2)}.
Ta chọn phương án A.
Câu 2. Trong các tập hợp sau đây, tập hợp nào bằng tập hợp M = ℝ(–∞; 2):
A. A = (‒∞; –2);
B. B = (‒∞; 2);
C. C = (2; +∞);
D. D = [2; +∞).
Hướng dẫn giải
Đáp án đúng là: D
Ta có tập hợp M = ℝ(–∞; 2) = [2; +∞).
Vậy phương án D đúng.
Câu 3. Cho các tập hợp A, B, C được minh hoạ bằng biểu đồ Ven như hình vẽ dưới đây:
Phần tô màu xám trong hình vẽ biểu diễn của tập hợp nào sau đây?
A. A ∩ B ∩ C;
B. (AB) ∪ (AC);
C. (A ∪ B) C;
D. (A ∩ B) C.
Hướng dẫn giải
Đáp án đúng là: D
Phần tô màu xám trong hình là biểu diễn tập hợp các điểm vừa thuộc A, thuộc B mà không thuộc C.
Đó chính là tập (A ∩ B) C.
Ta chọn phương án D.
2. Bài tập tự luận
Bài 1. Xác định tập hợp A ∩ B và A ∪ B trong mỗi trường hợp sau:
a) A = {x ∈ ℕ | x ⋮ 4, x < 30}, B = {x ∈ ℕ | x ⋮ 5, x < 30}.
b) C = {x ∈ ℝ| 2x + 4 > 0, x < 5} và D = {x ∈ ℝ| (x + 3)(x – 4) ≤ 0}.
Hướng dẫn giải
a) Ta xác định các phần tử của tập hợp A và tập hợp B.
A = {0; 4; 8; 12; 16; 20; 24; 28}.
B = {0; 5; 10; 15; 20; 25}.
Suy ra A ∩ B = {0; 20};
A ∪ B = {0; 4; 5; 8; 10; 12; 15; 16; 20; 24; 25; 28}.
b) Ta xác định các phần tử của tập hợp C và tập hợp D.
⇔ –3 ≤ x ≤ 4.
Do đó: D = [–3; 4].
Ta có sơ đồ sau:
Từ sơ đồ, ta thấy C ∩ D = (–2; 4] và C ∪ D = [–3; 5).
Bài 2. Lớp 10A của trường có 33 học sinh, trong đó có 20 học sinh thích môn Toán, 18 học sinh thích môn Ngữ Văn và 10 học sinh thích cả môn Toán và Ngữ Văn. Hỏi lớp 10A có:
a) Bao nhiêu học sinh thích ít nhất 1 trong 2 môn Toán và môn Ngữ Văn?
b) Bao nhiêu học sinh không thích môn nào?
Hướng dẫn giải
a) Gọi A là tập hợp số học sinh thích môn Toán.
B là tập hợp số học sinh thích môn Ngữ Văn.
Số phần tử của A và B lần lượt là n(A) và n(B) thì n(A) = 20, n(B) = 18.
Ta có:
+) Tập hợp số học sinh thích cả môn Toán và Ngữ Văn là A ∩ B nên n(A ∩ B) = 10.
+) Tập hợp số học sinh thích ít nhất 1 trong 2 môn Toán và môn Ngữ Văn là A ∪ B.
Nên tổng số học sinh thích ít nhất 1 trong 2 môn Toán và môn Ngữ Văn là n(A ∪ B).
Suy ra n(A ∪ B) = n(A) + n(B) ‒ n(A ∩ B) = 20 + 18 – 10 = 28.
Vậy có 28 học sinh thích ít nhất 1 trong 2 môn Toán và môn Ngữ Văn.
b) Số học sinh không thích môn học nào là: 33 – 28 = 5 (học sinh)
Vậy có 5 học sinh không thích môn học nào trong hai môn Toán và môn Ngữ Văn.
Bài 3. Cho U = {x ∈ ℕ | x < 20}, A = {x ∈ U | x là bội của 4}, B = {x ∈ U | x là ước của 12}. Xác định các tập hợp AB, BA, CUA, CUB, CU(A ∪ B), CU( A ∩ B).
Hướng dẫn giải
Ta xác định các phần tử của tập hợp U, A, B.
U = {x ∈ ℕ | x < 20} = {0; 1; 2; 3; 4; …; 19}.
A = {x ∈ U | x là bội của 4} = {0; 4; 8; 12; 16}.
B = {x ∈ U | x là ước của 12} = {1; 2; 3; 4; 6; 12}.
Khi đó ta có:
AB = {0; 8; 16}.
BA = {1; 2; 3; 6}.
CUA = {1; 2; 3; 5; 6; 7; 9; 10; 11; 13; 14; 15; 17; 18; 19}.
CUB = {0; 5; 7; 8; 9; 10; 11; 13; 14; 15; 16; 17; 18; 19}.
A ∩ B = {4; 12}, A ∪ B = {0; 1; 2; 3; 4; 6; 8; 12; 16}.
CU(A ∪ B) = {5; 7; 9; 10; 11; 13; 14; 15; 17; 18; 19}.
CU(A ∩ B) = {1; 2; 3; 5; 6; 7; 8; 9; 10; 11; 13; 14; 15; 16; 17; 18; 19}.
C. Trắc nghiệm Toán 10 bài 3
—————————————–
Như vậy TaiLieuViet đã giới thiệu các bạn tài liệu Lý thuyết Toán lớp 10 bài 3: Các phép toán trên tập hợp. Mời các bạn tham khảo thêm tài liệu: Giải bài tập Toán lớp 10,Chuyên đề Toán 10,Giải Vở BT Toán 10 ,Toán 10 Cánh Diều, Toán 10 Kết nối tri thức, Tài liệu học tập lớp 10.
Related posts
Tài liệu nổi bật
Categories
- Âm Nhạc – Mỹ Thuật Lớp 9 (17)
- Âm nhạc lớp 6 – KNTT (31)
- Âm Nhạc Lớp 7- CTST (23)
- Bài tập Toán 9 (8)
- Chưa phân loại (32)
- Chuyên đề Hóa học 12 (196)
- Chuyên đề Sinh học lớp 12 (61)
- Chuyên đề Toán 9 (50)
- Công Nghệ Lớp 10- CD (58)
- Công Nghệ Lớp 10- KNTT (52)
- Công nghệ Lớp 11 – KNTT (22)
- Công Nghệ Lớp 6 – CTST (15)
- Công Nghệ Lớp 6 – KNTT (16)
- Công Nghệ Lớp 7- CTST (18)
- Công Nghệ Lớp 7- KNTT (19)
- Công nghệ Lớp 8 – CD (21)
- Công nghệ Lớp 8 – CTST (18)
- Công nghệ Lớp 8 – KNTT (7)
- Công Nghệ Lớp 9 (114)
- Đề thi học kì 2 lớp 9 môn Văn (35)
- Địa Lí Lớp 10- CD (99)
- Địa Lí Lớp 10- KNTT (77)
- Địa lí Lớp 11 – CD (31)
- Địa lí Lớp 11 – CTST (23)
- Địa lí Lớp 11 – KNTT (19)
- Địa Lí Lớp 12 (134)
- Địa lí Lớp 6 – CTST (36)
- Địa lí Lớp 6 – KNTT (30)
- Địa Lí Lớp 7- CTST (22)
- Địa Lí Lớp 7- KNTT (19)
- Địa Lí Lớp 9 (290)
- GDCD 12 (28)
- GDCD Lớp 6 – CTST (8)
- GDCD Lớp 6 – KNTT (12)
- GDCD Lớp 9 (94)
- Giải bài tập Địa Lí 12 (12)
- Giải bài tập SGK Toán 12 (8)
- Giải bài tập Sinh học 12 (45)
- Giải SBT Hóa học 12 (71)
- Giải vở BT Văn 9 (122)
- Giáo Dục Công Dân Lớp 7- CTST (12)
- Giáo Dục Công Dân Lớp 7- KNTT (10)
- Giáo dục công dân Lớp 8 – CD (10)
- Giáo dục công dân Lớp 8 – CTST (10)
- Giáo dục công dân Lớp 8 – KNTT (10)
- Giáo Dục Quốc Phòng Lớp 10- CD (12)
- Giáo Dục Quốc Phòng Lớp 10- KNTT (12)
- Hóa Học Lớp 10- CD (30)
- Hóa Học Lớp 10- KNTT (61)
- Hoá Học Lớp 11 – CD (19)
- Hoá học Lớp 11 – CTST (19)
- Hoá học Lớp 11 – KNTT (25)
- Hóa Học Lớp 12 (130)
- Hóa Học Lớp 9 (717)
- Hoạt Động Trải Nghiệm Lớp 10- KNTT (52)
- Hoạt Động Trải Nghiệm Lớp 7- CTST (40)
- Hoạt Động Trải Nghiệm Lớp 7- KNTT (16)
- Hoạt động trải nghiệm Lớp 8 – CD (19)
- Hoạt động trải nghiệm Lớp 8 – CTST (9)
- Hoạt động trải nghiệm Lớp 8 – KNTT (18)
- Khoa học tự nhiên Lớp 6 – CTST (46)
- Khoa học tự nhiên Lớp 6 – KNTT (57)
- Khoa Học Tự Nhiên Lớp 7- CTST (51)
- Khoa học tự nhiên Lớp 8 – CD (51)
- Khoa học tự nhiên Lớp 8 – CTST (33)
- Khoa học tự nhiên Lớp 8 – KNTT (37)
- Kinh Tế & Pháp Luật Lớp 10 – CD (21)
- Kinh tế & Pháp luật Lớp 11 – CD (21)
- Kinh tế & Pháp luật Lớp 11 – CTST (11)
- Kinh tế & Pháp luật Lớp 11 – KNTT (11)
- Lịch Sử Lớp 10- CD (34)
- Lịch Sử Lớp 10- CTST (20)
- Lịch Sử Lớp 10- KNTT (42)
- Lịch sử Lớp 11 – CTST (13)
- Lịch sử Lớp 11 – KNTT (13)
- Lịch sử Lớp 6 – CTST (21)
- Lịch sử Lớp 6 – KNTT (22)
- Lịch Sử Lớp 7- CTST (19)
- Lịch sử lớp 7- KNTT (18)
- Lịch Sử Lớp 9 (148)
- Lịch sử và Địa lí Lớp 8 – CTST (40)
- Lịch sử và Địa lí Lớp 8 – KNTT (33)
- Lý thuyết Địa lý 12 (4)
- Lý thuyết Lịch sử lớp 9 (33)
- Lý thuyết Ngữ Văn (83)
- Lý thuyết Ngữ Văn 12 (18)
- Lý thuyết Sinh học 12 (41)
- Mở bài – Kết bài hay (55)
- Mở bài lớp 12 hay (24)
- Nghị luận xã hội (34)
- Ngữ Văn Lớp 10- CD (113)
- Ngữ Văn Lớp 10- CTST (79)
- Ngữ Văn Lớp 10- KNTT (198)
- Ngữ Văn Lớp 11 – CD (51)
- Ngữ văn Lớp 11 – CTST (89)
- Ngữ Văn Lớp 11 – KNTT (107)
- Ngữ Văn Lớp 12 (379)
- Ngữ Văn Lớp 6 – KNTT (293)
- Ngữ Văn Lớp 7- CTST (103)
- Ngữ Văn Lớp 7- KNTT (66)
- Ngữ văn Lớp 8 – CD (48)
- Ngữ văn Lớp 8 – CTST (123)
- Ngữ văn Lớp 8 – KNTT (196)
- Ngữ Văn Lớp 9 (28)
- Phân tích các tác phẩm lớp 12 (12)
- Sinh Học Lớp 10- CD (49)
- Sinh Học Lớp 10- CTST (61)
- Sinh Học Lớp 10- KNTT (71)
- Sinh Học Lớp 11 – CD (16)
- Sinh học Lớp 11 – CTST (18)
- Sinh học Lớp 11 – KNTT (18)
- Sinh Học Lớp 9 (229)
- Soạn Anh 12 mới (86)
- Soạn văn 9 (50)
- SOẠN VĂN 9 BÀI 1 (50)
- SOẠN VĂN 9 BÀI 2 (50)
- Tác giả – Tác phẩm (41)
- Tác giả – Tác phẩm Ngữ Văn 12 (13)
- Thi THPT QG môn Địa lý (12)
- Thi THPT QG môn Sinh (8)
- Tiếng Anh Lớp 10 Friends Global (57)
- Tiếng Anh Lớp 10 Global Success (604)
- Tiếng Anh Lớp 10 iLearn Smart World (98)
- Tiếng anh Lớp 11 Friends Global (171)
- Tiếng anh Lớp 11 Global Success (368)
- Tiếng anh Lớp 11 iLearn Smart World (104)
- Tiếng Anh Lớp 12 cũ (168)
- Tiếng Anh Lớp 6 Friends Plus (114)
- Tiếng Anh Lớp 6 Global Success (174)
- Tiếng Anh Lớp 7 Friends Plus (160)
- Tiếng Anh Lớp 8 Friends plus (71)
- Tiếng anh Lớp 8 Global Success (79)
- Tiếng anh Lớp 8 iLearn Smart World (40)
- Tiếng Anh Lớp 9 Mới (211)
- Tin Học Lớp 10- CD (24)
- Tin Học Lớp 10- KNTT (33)
- Tin học Lớp 11 – KNTT (21)
- Tin Học Lớp 6 – CTST (41)
- Tin Học Lớp 6- KNTT (17)
- Tin Học Lớp 7- CTST (14)
- Tin Học Lớp 7- KNTT (16)
- Tin học Lớp 8 – CD (36)
- Tin học Lớp 8 – CTST (10)
- Tin học Lớp 8 – KNTT (5)
- Tin Học Lớp 9 (21)
- Toán 10 sách Chân trời sáng tạo (42)
- Toán Lớp 1 – KNTT (1)
- Toán Lớp 10- CD (44)
- Toán Lớp 10- CTST (39)
- Toán Lớp 10- KNTT (161)
- Toán Lớp 11 – CD (19)
- Toán Lớp 11 – CTST (44)
- Toán Lớp 11 – KNTT (46)
- Toán Lớp 12 (123)
- Toán Lớp 6 – CTST (62)
- Toán Lớp 6 – KNTT (102)
- Toán Lớp 7- CTST (52)
- Toán Lớp 7- KNTT (74)
- Toán Lớp 8 – CD (23)
- Toán Lớp 8 – CTST (21)
- Toán Lớp 8 – KNTT (34)
- Toán Lớp 9 (194)
- Tóm tắt Ngữ văn (16)
- Trắc nghiệm Ngữ Văn (75)
- Trắc nghiệm Toán 9 (61)
- Trải nghiệm hướng nghiệp Lớp 11 – KNTT (8)
- Văn mẫu 12 phân tích chuyên sâu (12)
- Văn mẫu 9 (273)
- Vật Lí Lớp 10- CD (39)
- Vật Lí Lớp 10- KNTT (61)
- Vật Lí Lớp 11 – CD (18)
- Vật lí Lớp 11 – CTST (20)
- Vật lí Lớp 11 – KNTT (26)
- Vật Lý Lớp 9 (217)