Chúng tôi xin trân trọng giới thiệu bài Lý thuyết Toán lớp 10 bài 1: Mệnh đề được TaiLieuViet sưu tầm và tổng hợp các câu hỏi lí thuyết và trắc nghiệm có đáp án đi kèm nằm trong chương trình giảng dạy môn Toán lớp 10 sách CTST. Mời quý thầy cô cùng các bạn tham khảo tài liệu dưới đây.

A. Lý thuyết bài 1

1. Mệnh đề

– Những khẳng định có tính hoặc đúng hoặc sai được gọi là mệnh đề logic (hay mệnh đề).

– Mệnh đề là một khẳng định đúng hoặc sai.

– Một khẳng định đúng gọi là mệnh đề đúng.

– Một khẳng định sai gọi là mệnh đề sai.

– Một mệnh đề không thể vừa đúng vừa sai.

Chú ý:

+ Người ta thường sử dùng các chữ cái in hoa P, Q, R, … để kí hiệu các mệnh đề.

+ Những mệnh đề liên quan đến toán học được gọi là mệnh đề toán học.

Ví dụ 1.

+ “Số tự nhiên nhỏ nhất là số 0” là một mệnh đề.

+ “2 là số chẵn” là mệnh đề đúng.

+ “2 là số lẻ” là mệnh đề sai.

+ “Hà Nội là thủ đô của Việt Nam” là mệnh đề nhưng không phải mệnh đề toán học vì không liên quan đến toán học.

+ “Số  là một số hữu tỉ” là mệnh đề toán học.

2. Mệnh đề chứa biến

– Mệnh đề chứa biến là mệnh đề chưa khẳng định được tính đúng sai, cần có giá trị cụ thể của biến mới có thể khẳng định tính đúng sai của mệnh đề đó.

– Ta thường kí hiệu mệnh đề chứa biến n là P (n).

– Một mệnh đề chứa biến có thể chứa một biến hoặc nhiều biến.

Ví dụ 2.

+ “18 chia hết cho 9: không phải là mệnh đề chứa biến vì không có biến trong mệnh đề.

+ “3n chia hết cho 9” là mệnh đề chứa biến n. Khi n = 3 thì mệnh đề này là mệnh đề đúng, khi n = 4 thì mệnh đề này là mệnh đề sai.

3. Mệnh đề phủ định

– Mỗi mệnh đề P có mệnh đề phủ định, kí hiệu là P¯.

– Mệnh đề P và mệnh đề phủ định P¯ của nó có tính đúng sai trái ngược nhau. Nghĩa là khi P đúng thì P¯ sai, khi P sai thì P¯ đúng.

Nhận xét:

+ Thông thường để phủ định một mệnh đề, người ta thường thêm (hoặc bớt) từ “không” hoặc “không phải” vào trước vị ngữ của mệnh đề đó.

Ví dụ 3.

4. Mệnh đề kéo theo

– Cho hai mệnh đề P và Q. Mệnh đề “Nếu P thì Q” được gọi là mệnh đề kéo theo, kí hiệu là P Q.

– Mệnh đề P Q chỉ sai khi P đúng và Q sai.

Nhận xét:

+ Mệnh đề P Q còn được phát biểu là “P kéo theo Q” hoặc “Từ P suy ra Q”.

+ Để xét tính đúng sai của mệnh đề P Q, ta chỉ cần xét trường hợp P đúng. Khi đó, nếu Q đúng thì mệnh đề đúng, nếu Q sai thì mệnh đề sai. Ta đã quen với điều này khi chứng minh nhiều định lí ở Trung học cơ sở.

Ví dụ 4. Cho hai mệnh đề: P: “9 chia hết cho 9”; Q: “9 chia hết cho 3”.

“Nếu 9 chia hết cho 9 thì 9 chia hết cho 3” là mệnh đề kéo theo có dạng P Q.

P là mệnh đề đúng và Q là mệnh đề đúng nên mệnh đề kéo theo P Q là mệnh đề đúng.

– Khi mệnh đề P Q là định lí, ta nói:

P là giả thiết, Q là kết luận của định lí;

P là điều kiện đủ để có Q;

Q là điều kiện cần để có P.

Ví dụ 5. Định lí Ta – lét: “Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì đường thẳng đó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ”.

Định lí có mệnh đề “Một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại” là giả thiết, mệnh đề “Đường thẳng đó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ” là kết luận.

5. Mệnh đề đảo. Hai mệnh đề tương đương

– Mệnh đề Q P được gọi là mệnh đề đảo của mệnh đề P Q.

Chú ý: Mệnh đề đảo của một mệnh đề đúng không nhất thiết là đúng.

Ví dụ 6. Cho hai mệnh đề:

P: “n = 0”; Q: “n là số nguyên”.

“Nếu n = 0 thì n là số nguyên” là mệnh đề .

“Nếu n là số nguyên thì n = 0” là mệnh đề .

+ Mệnh đề  “Nếu n là số nguyên thì n = 0” là mệnh đề đảo của mệnh đề  “Nếu n = 0 thì n là số nguyên”.

+ Mệnh đề  là mệnh đề đúng còn mệnh đề  không đúng.

– Nếu cả hai mệnh đề P Q và Q P đều đúng thì ta nói P và Q là hai mệnh đề tương đương, kí hiệu là P Q (đọc là “P tương đương Q” hoặc “P khi và chỉ khi Q”).

– Khi đó ta cũng nói P là điều kiện cần và đủ để có Q (hay Q là điều kiện cần và đủ để có P).

Nhận xét: Hai mệnh đề P và Q tương đương khi chúng cùng đúng hoặc cùng sai.

Ví dụ 7. Cho 2 mệnh đề: P: “Tứ giác ABCD là hình bình hành”; Q: “Tứ giác ABCD có hai cặp cạnh đối song song”.

“Nếu tứ giác ABCD là hình bình hành thì tứ giác ABCD có hai cặp cạnh đối song song” là mệnh đề .

“Nếu tứ giác ABCD có hai cặp cạnh đối song song thì tứ giác ABCD là hình bình hành” là mệnh đề .

Hai mệnh đề này đều đúng nên P và Q là hai mệnh đề tương đương.

6. Mệnh đề chứa kí hiệu

– Kí hiệu đọc là “với mọi”.

– Kí hiệu đọc là “tồn tại”.

– Mệnh đề “x M, P(x)” đúng nếu với mọi x0 M, P(x0) là mệnh đề đúng.

– Mệnh đề “x M, P(x)” đúng nếu có x0 M sao cho P(x0) là mệnh đề đúng.

Ví dụ 8. 

+ Phát biểu “Với mọi số tự nhiên n” có thể kí hiệu là .

+ Phát biểu “Tồn tại số tự nhiên n” có thể kí hiệu là .

+ Với mọi x là số tự nhiên, mệnh đề “x + 1 > 0” là mệnh đề đúng. Vậy mệnh đề “Với mọi x là số tự nhiên, x + 1 > 0” là mệnh đề đúng.

+ Tồn tại một số nguyên tố n để mệnh đề “Số nguyên tố n chia hết cho 2” là mệnh đề đúng. Vậy mệnh đề “Tồn tại một số nguyên tố n, số nguyên tố n chia hết cho 2” là mệnh đề đúng.

B. Bài tập tự luyện

Bài 1. Lập mệnh đề phủ định của mỗi mệnh đề sau và nhận xét tính đúng sai mệnh đề phủ định đó:

a) P: “Số 21 chia hết cho 6”.

b) P: “7 là một số nguyên tố”.

Hướng dẫn giải

a) Mệnh đề phủ định của mệnh đề P: “Số 21 chia hết cho 6” là : “Số 21 không chia hết cho 6”. Mệnh đề phủ định này là mệnh đề đúng.

b) Mệnh đề phủ định của mệnh đề P: “7 là một số nguyên tố” là : “7 không là một số nguyên tố”. Mệnh đề phủ định này là mệnh đề sai.

Bài 2. Cho tam giác ABC. Xét các mệnh đề:

P: “Tam giác ABC có ba góc bằng nhau”.

Q: “Tam giác ABC là tam giác đều”.

Hai mệnh đề P và Q có tương đương nhau không? Nếu có, phát biểu bằng nhiều cách?

Hướng dẫn giải

P Q: “Tam giác ABC có ba góc bằng nhau thì tam giác ABC là tam giác đều”. Do đó mệnh đề P Q đúng.

Q P: “Tam giác ABC là tam giác đều thì tam giác ABC có ba góc bằng nhau”. Do đó mệnh đề Q P đúng.

P và Q là hai mệnh đề tương đương nhau bởi hai mệnh đề P Q và Q P đều đúng.

Phát biểu nhiều cách:

– Tam giác ABC có ba góc bằng nhau tương đương tam giác ABC là tam giác đều.

– Tam giác ABC có ba góc bằng nhau khi và chỉ khi tam giác ABC là tam giác đều.

+ Để tam giác có ba góc bằng nhau, điều kiện cần và đủ là tam giác ABC là tam giác đều.

Bài 3. Dùng kí hiệu hoặc để viết các mệnh đề sau:

a) Có số nguyên không chia hết cho chính nó.

b) Mọi số thực cộng với 0 đều bằng chính nó.

Hướng dẫn giải

a) ∃x∈ℤ, x⋮x.

b) ∀x∈ℝ, x+0=x.

Bài 4. Phát biểu và xét mệnh đề đúng hay sai, viết mệnh đề phủ định của mệnh đề sau:

a) ∀x∈ℤ, x2≥0.

b) ∃x∈ℤ, x<0.

Hướng dẫn giải

a) Phát biểu mệnh đề: “Mọi số nguyên đều có bình phương lớn hơn hoặc bằng 0”. Đây là mệnh đề đúng.

Mệnh đề phủ định là: “x ℤ, x2 < 0”.

b) Phát biểu mệnh đề: “Tồn tại số nguyên nhỏ hơn 0”. Đây là mệnh đề đúng.

Mệnh đề phủ định là: “x ℤ, x ≥ 0”.

Bài 5. Trong các câu sau, câu nào là mệnh đề đúng, mệnh đề sai, mệnh đề chứa biến?

a) “5 là số vô tỉ”;

b) “x chia hết cho y”;

c) “Số 9999 là một số rất đẹp”;

d) “x có phải là số nguyên không?”.

Hướng dẫn giải

a) “5 là số vô tỉ”: đây là mệnh đề và là mệnh đề sai vì đây là khẳng định sai.

b) “x chia hết cho y”: đây là mệnh đề chứa biến vì khi x = 6 và y = 2 thì đây là khẳng định đúng, nhưng khi x = 3 và y = 2 thì đây là khẳng định sai.

c) “Số 9999 là một số rất đẹp”: đây không là mệnh đề do không có tính hoặc đúng hoặc sai (do không đưa ra tiêu chí thế nào là số rất đẹp).

d) “x có phải là số nguyên không?”: đây là câu hỏi nên không phải là mệnh đề.

C. Trắc nghiệm bài Mệnh đề

—————————————–

Như vậy TaiLieuViet đã giới thiệu các bạn tài liệu Lý thuyết Toán lớp 10 bài 1: Mệnh đề. Mời các bạn tham khảo thêm tài liệu: Giải bài tập Toán lớp 10,Chuyên đề Toán 10,Giải Vở BT Toán 10 ,Toán 10 Cánh Diều, Toán 10 Kết nối tri thức, Tài liệu học tập lớp 10.