Giải bài tập SGK Toán lớp 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số là tài liệu tham khảo hữu ích dành cho các bạn học sinh, giúp các bạn ôn luyện kiến thức đồng thời cũng giúp học sinh học tốt môn Toán lớp 9. Mời các bạn tham khảo chi tiết bài viết dưới đây nhé.
- Giải bài tập SGK Toán lớp 9 bài 7: Vị trí tương đối của hai đường tròn
- Giải bài tập Toán 9 bài 8: Vị trí tương đối của hai đường tròn (tiếp theo)
- Giải bài tập Toán lớp 9 bài 9: Ôn tập chương II. Đường tròn
- Giải bài tập SGK Toán lớp 9 bài 2: Hệ hai phương trình bậc nhất hai ẩn
- Giải bài tập SGK Toán lớp 9 bài 3: Giải hệ phương trình bằng phương pháp thế
Mục Lục
ToggleTrả lời câu hỏi Toán 9 Tập 2 Bài 4 trang 17
Áp dụng quy tắc cộng đại số để biến đồi hệ (I), nhưng ở bước 1, hãy trừ từng vế hai phương trình của hệ (I) và viết ra các hệ phương trình mới thu được.
Lời giải
Trừ từng vế hai phương trình của hệ (I) ta được phương trình:
(2x – y) – (x + y) = 1 – 2 hay x – 2y = -1
Khi đó, ta thu được hệ phương trình mới:
Trả lời câu hỏi Toán 9 Tập 2 Bài 4 trang 17
Các hệ số của y trong hai phương trình của hệ (II) có đặc điểm gì?
Lời giải
Hệ số của y trong hai phương trình của hệ (II) đối nhau (có tổng bằng 0)
Trả lời câu hỏi Toán 9 Tập 2 Bài 4 trang 18
a) Nếu nhận xét về các hệ số của x trong hai phương trình của hệ (III).
b) Áp dụng quy tắc cộng đại số, hãy giải hệ (III) bằng cách trừ từng vế hai phương trình của (III).
Lời giải
a) Hệ số của x trong hai phương trình của hệ (III) giống nhau
Lấy phương trình thứ nhất trừ đi phương trình thứ hai vế với vế, ta được: 5y = 5
Do đó
Vậy hệ phương trình có nghiệm duy nhất (7/2;1)
Trả lời câu hỏi Toán 9 Tập 2 Bài 4 trang 18
Giải tiếp hệ (IV) bằng phương pháp đã nêu ở trường hợp thứ nhất.
Lời giải
Vậy hệ phương trình có nghiệm duy nhất (3; -1)
Trả lời câu hỏi Toán 9 Tập 2 Bài 4 trang 18
Nêu một cách khác để đưa hệ phương trình (IV) về trường hợp thứ nhất?
Lời giải
Chia cả 2 vế của phương trình thứ nhất cho 3 và 2 vế của phương trình thứ hai cho 2 ta được:
Bài 20 trang 18 SGK Toán 9 tập 2
Giải các hệ phương trình sau bằng phương pháp cộng đại số.
e)
Hướng dẫn giải:
a.
(Cộng hai vế của hai phương trình)
Vậy HPT có nghiệm duy nhất
Trừ vế với vế của hai phương trình trong hệ, ta được:
Vậy hệ phương trình có nghiệm duy nhất là
Nhân hai vế của phương trình thứ hai với 2, rồi trừ vế với vế của hai phương trình trong hệ, ta được:
Vậy hệ phương trình có nghiệm duy nhất là (3; -2).
Nhân hai vế của phương trình thứ nhất với 3, nhân hai vế của phương trình thứ hai với 2, rồi trừ vế với vế của hai phương trình trong hệ, ta được
Vậy hệ phương trình có nghiệm duy nhất là (-1; 0).
e)
Nhân hai vế của phương trình thứ nhất với 5 rồi trừ vế với vế của hai phương trình trong hệ, ta được:
Vậy hệ phương trình có nghiệm duy nhất là (5; 3).
Bài 21 trang 18 SGK Toán 9 tập 2
Giải các hệ phương trình sau bằng phương pháp cộng đại số.
Hướng dẫn giải:
a) Nhân cả hai vế của phương trình thứ nhất với -sqrt 2, rồi cộng từng vế hai phương trình, ta được:
Vậy hệ phương trình đã cho có nghiệm duy nhất là:
b) Nhân hai vế của phương trình thứ nhất với , rồi cộng từng vế hai phương trình.
Ta có
Suy ra
Vậy hệ phương trình đã cho có nghiệm duy nhất là
Bài 22 trang 19 SGK Toán 9 tập 2
Giải các hệ phương trình sau bằng phương pháp cộng đại số:
Hướng dẫn giải:
Nhân phương trình trên với 3, nhân phương trình dưới với 2, rồi cộng vế với vế của hai phương trình trong hệ, ta được:
Vậy hệ đã cho có nghiệm duy nhất là
Nhân hai vế phương trình trên với 2 rồi cộng hai vế của hai phương trình với nhau, ta được:
Vậy hệ phương trình vô nghiệm.
Đổi hỗn số về phân số rồi nhân hai vế của phương trình dưới với 3 sau đó trừ vế với vế của hai phương trình ta được:
Vậy hệ phương trình có vô số nghiệm.
Bài 23 trang 19 SGK Toán 9 tập 2
Giải hệ phương trình sau:
Hướng dẫn giải:
Xét hệ
Trừ từng vế hai phương trình (1) cho (2), ta được:
Thay (3) vào (1) ta được:
Vậy hệ phương trình đã cho có nghiệm duy nhất là:
Bài 24 trang 19 SGK Toán 9 tập 2
Giải hệ các phương trình:
a)
Hướng dẫn giải:
a)
Thực hiện nhân phá ngoặc và thu gọn, ta được:
Trừ vế với vế của hai phương trình ta được:
Vậy hệ đã cho có nghiệm duy nhất là
Phá ngoặc và thu gọn vế trái của hai phương trình trong hệ, ta được:
Vậy hệ phương trình đã cho có nghiệm duy nhất là (1; -1).
Bài 25 trang 19 SGK Toán 9 tập 2
Ta biết rằng: Một đa thức bằng đa thức 0 khi và chỉ khi tất cả các hệ số của nó bằng 0. Hãy tìm các giá trị của m và n để đa thức sau (với biến số x) bằng đa thức 0:
P(x) = (3m – 5n + 1)x + (4m – n -10).
Hướng dẫn giải:
Ta có
P(x) = (3m – 5n + 1)x + (4m – n -10) có hai hệ số là a=(3m – 5n + 1) và b=(4m – n -10).
Do đó
Vậy m=3, n=2 thì đa thức P(x) =0.
Bài 26 trang 19 SGK Toán 9 tập 2
Xác định a và b để đồ thị của hàm số y = ax + b đi qua điểm A và B trong mỗi trường hợp sau:
a)A(2; -2) và B(-1; 3)
b) A(-4; -2) và B(2; 1)
c) A(3; -1) và B(-3; 2)
d) và B(0; 2)
Hướng dẫn giải:
a)A(2; -2) và B(-1; 3)
Hàm số y=ax+b (1)
Vì đồ thị hàm số đi qua A(2; -2), thay x=2, y=-2 vào (1), ta được: -2=2a + b.
Vì đồ thị hàm số đi qua B(-1; 3), thay x=-1, y=3 vào (1), ta được: 3=-a + b.
Ta có hệ phương trình ẩn là a và b.
Vậy
b) A(-4; -2) và B(2; 1)
Hàm số y=ax+b (1)
Vì đồ thị hàm số đi qua A(-4; -2), thay x=-4, y=-2 vào (1), ta được: -2=-4a + b .
Vì đồ thị hàm số đi qua B(2; 1), thay x=2, y=1 vào (1), ta được: 1=2a + b.
Ta có hệ phương trình ẩn là a, b:
Vậy
c) A(3; -1) và B(-3; 2)
Hàm số y=ax+b (1)
Vì đồ thị hàm số đi qua A(3; -1), thay x=3, y=-1 vào (1), ta được: -1=3a + b
Vì đồ thị hàm số đi qua B(-3; 2), thay x=-3,y=2 vào (1), ta được: 2=-3a + b.
Ta có hệ phương trình ẩn a, b:
Vậy
d) và B(0; 2)
Hàm số y=ax+b (1)
Vì đồ thị hàm số đi qua , thay y=2 vào (1), ta được: .
Vì đồ thị hàm số đi qua B(0; 2), thay x=0, y=2 vào (1), ta được: 2= 0 . a + b .
Ta có hệ phương trình ẩn là a, b.
Vậy a=0, b=2.
Bài 27 trang 20 SGK Toán 9 tập 2
Bằng cách đặt ẩn phụ (theo hướng dẫn), đưa các hệ phương trình sau về dạng hệ hai phương trình bậc nhật hai ẩn rồi giải:
a)
Hướng dẫn.
Đặt
Hướng dẫn. Đặt
Hướng dẫn giải:
a) Điền kiện x ≠ 0, y ≠ 0.
Đặt (với ).
Phương trình đã cho trở thành:
Suy ra
Vậy hệ đã cho có nghiệm duy nhất
Hướng dẫn. Đặt
Điều kiện
Đặt (với ).
Phương trình đã cho trở thành:
Suy ra
Vậy hệ đã cho có nghiệm duy nhất
Bài 30 trang 22 SGK Toán 9 tập 2
Một ô tô đi từ A và dự định đến B lúc 12 giờ trưa. Nếu xe chạy với vận tốc 35 km/h
Đề bài
Một ô tô đi từ A và dự định đến B lúc 12 giờ trưa. Nếu xe chạy với vận tốc 35 km/h thì sẽ đến B chậm 2 giờ so với quy định. Nếu xe chạy với vận tốc 50 km/h thì sẽ đến B sớm 1 giờ so với quy định. Tính độ dài quãng đường AB và thời điểm xuất phát của ôtô tại A.
Sử dụng công thức: , trong đó là quãng đường đi được (km); là vận tốc (km/h); là thời gian (h).
Lời giải chi tiết
Gọi (km) là độ dài quãng đường , (giờ) là thời gian dự định đi từ để đến đúng lúc 12 giờ trưa. Điều kiện (do ôtô đến sớm hơn giờ).
+) Trường hợp 1:
Xe đi với vận tốc 35 km (h)
Xe đến B chậm hơn 2 giờ nên thời gian đi hết là: (giờ)
Quãng đường đi được là: (km)
Vì quãng đường không đổi nên ta có phương trình: (1)
+) Trường hợp 2:
Xe đi với vận tốc: 50 km/h
Vì xe đến B sớm hơn 1 giờ nên thời gian đi hết là: (giờ)
Quãng đường đi được là: (km)
Vì quãng đường không đổi nên ta có phương trình: (2)
Từ (1) và (2) ta có hệ phương trình:
Lấy vế trừ vế của (1) cho (2), ta được:
(thỏa mãn)
Vậy quãng đường AB là 350km.
Thời điểm xuất phát của ô tô tại AA là: 12 − 8 = 412 − 8 = 4 giờ.
………………………………
Ngoài Giải bài tập SGK Toán lớp 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số. Mời các bạn học sinh còn có thể tham khảo các đề thi học học kì 1 lớp 9, đề thi học học kì 2 lớp 9 các môn Toán, Văn, Anh, Hóa, Lý, Địa, Sinh mà chúng tôi đã sưu tầm và chọn lọc. Với đề thi học kì 2 lớp 9 này giúp các bạn rèn luyện thêm kỹ năng giải đề và làm bài tốt hơn. Chúc các bạn ôn thi tốt
Related posts
Tài liệu nổi bật
Categories
- Âm Nhạc – Mỹ Thuật Lớp 9 (17)
- Âm nhạc lớp 6 – KNTT (31)
- Âm Nhạc Lớp 7- CTST (23)
- Bài tập Toán 9 (8)
- Chưa phân loại (32)
- Chuyên đề Hóa học 12 (196)
- Chuyên đề Sinh học lớp 12 (61)
- Chuyên đề Toán 9 (50)
- Công Nghệ Lớp 10- CD (58)
- Công Nghệ Lớp 10- KNTT (52)
- Công nghệ Lớp 11 – KNTT (22)
- Công Nghệ Lớp 6 – CTST (15)
- Công Nghệ Lớp 6 – KNTT (16)
- Công Nghệ Lớp 7- CTST (18)
- Công Nghệ Lớp 7- KNTT (19)
- Công nghệ Lớp 8 – CD (21)
- Công nghệ Lớp 8 – CTST (18)
- Công nghệ Lớp 8 – KNTT (7)
- Công Nghệ Lớp 9 (114)
- Đề thi học kì 2 lớp 9 môn Văn (35)
- Địa Lí Lớp 10- CD (99)
- Địa Lí Lớp 10- KNTT (77)
- Địa lí Lớp 11 – CD (31)
- Địa lí Lớp 11 – CTST (23)
- Địa lí Lớp 11 – KNTT (19)
- Địa Lí Lớp 12 (134)
- Địa lí Lớp 6 – CTST (36)
- Địa lí Lớp 6 – KNTT (30)
- Địa Lí Lớp 7- CTST (22)
- Địa Lí Lớp 7- KNTT (19)
- Địa Lí Lớp 9 (290)
- GDCD 12 (28)
- GDCD Lớp 6 – CTST (8)
- GDCD Lớp 6 – KNTT (12)
- GDCD Lớp 9 (94)
- Giải bài tập Địa Lí 12 (12)
- Giải bài tập SGK Toán 12 (8)
- Giải bài tập Sinh học 12 (45)
- Giải SBT Hóa học 12 (71)
- Giải vở BT Văn 9 (122)
- Giáo Dục Công Dân Lớp 7- CTST (12)
- Giáo Dục Công Dân Lớp 7- KNTT (10)
- Giáo dục công dân Lớp 8 – CD (10)
- Giáo dục công dân Lớp 8 – CTST (10)
- Giáo dục công dân Lớp 8 – KNTT (10)
- Giáo Dục Quốc Phòng Lớp 10- CD (12)
- Giáo Dục Quốc Phòng Lớp 10- KNTT (12)
- Hóa Học Lớp 10- CD (30)
- Hóa Học Lớp 10- KNTT (61)
- Hoá Học Lớp 11 – CD (19)
- Hoá học Lớp 11 – CTST (19)
- Hoá học Lớp 11 – KNTT (25)
- Hóa Học Lớp 12 (130)
- Hóa Học Lớp 9 (717)
- Hoạt Động Trải Nghiệm Lớp 10- KNTT (52)
- Hoạt Động Trải Nghiệm Lớp 7- CTST (40)
- Hoạt Động Trải Nghiệm Lớp 7- KNTT (16)
- Hoạt động trải nghiệm Lớp 8 – CD (19)
- Hoạt động trải nghiệm Lớp 8 – CTST (9)
- Hoạt động trải nghiệm Lớp 8 – KNTT (18)
- Khoa học tự nhiên Lớp 6 – CTST (46)
- Khoa học tự nhiên Lớp 6 – KNTT (57)
- Khoa Học Tự Nhiên Lớp 7- CTST (51)
- Khoa học tự nhiên Lớp 8 – CD (51)
- Khoa học tự nhiên Lớp 8 – CTST (33)
- Khoa học tự nhiên Lớp 8 – KNTT (37)
- Kinh Tế & Pháp Luật Lớp 10 – CD (21)
- Kinh tế & Pháp luật Lớp 11 – CD (21)
- Kinh tế & Pháp luật Lớp 11 – CTST (11)
- Kinh tế & Pháp luật Lớp 11 – KNTT (11)
- Lịch Sử Lớp 10- CD (34)
- Lịch Sử Lớp 10- CTST (20)
- Lịch Sử Lớp 10- KNTT (42)
- Lịch sử Lớp 11 – CTST (13)
- Lịch sử Lớp 11 – KNTT (13)
- Lịch sử Lớp 6 – CTST (21)
- Lịch sử Lớp 6 – KNTT (22)
- Lịch Sử Lớp 7- CTST (19)
- Lịch sử lớp 7- KNTT (18)
- Lịch Sử Lớp 9 (148)
- Lịch sử và Địa lí Lớp 8 – CTST (40)
- Lịch sử và Địa lí Lớp 8 – KNTT (33)
- Lý thuyết Địa lý 12 (4)
- Lý thuyết Lịch sử lớp 9 (33)
- Lý thuyết Ngữ Văn (83)
- Lý thuyết Ngữ Văn 12 (18)
- Lý thuyết Sinh học 12 (41)
- Mở bài – Kết bài hay (55)
- Mở bài lớp 12 hay (24)
- Nghị luận xã hội (34)
- Ngữ Văn Lớp 10- CD (113)
- Ngữ Văn Lớp 10- CTST (79)
- Ngữ Văn Lớp 10- KNTT (198)
- Ngữ Văn Lớp 11 – CD (51)
- Ngữ văn Lớp 11 – CTST (89)
- Ngữ Văn Lớp 11 – KNTT (107)
- Ngữ Văn Lớp 12 (379)
- Ngữ Văn Lớp 6 – KNTT (293)
- Ngữ Văn Lớp 7- CTST (103)
- Ngữ Văn Lớp 7- KNTT (66)
- Ngữ văn Lớp 8 – CD (48)
- Ngữ văn Lớp 8 – CTST (123)
- Ngữ văn Lớp 8 – KNTT (196)
- Ngữ Văn Lớp 9 (28)
- Phân tích các tác phẩm lớp 12 (12)
- Sinh Học Lớp 10- CD (49)
- Sinh Học Lớp 10- CTST (61)
- Sinh Học Lớp 10- KNTT (71)
- Sinh Học Lớp 11 – CD (16)
- Sinh học Lớp 11 – CTST (18)
- Sinh học Lớp 11 – KNTT (18)
- Sinh Học Lớp 9 (229)
- Soạn Anh 12 mới (86)
- Soạn văn 9 (50)
- SOẠN VĂN 9 BÀI 1 (50)
- SOẠN VĂN 9 BÀI 2 (50)
- Tác giả – Tác phẩm (41)
- Tác giả – Tác phẩm Ngữ Văn 12 (13)
- Thi THPT QG môn Địa lý (12)
- Thi THPT QG môn Sinh (8)
- Tiếng Anh Lớp 10 Friends Global (57)
- Tiếng Anh Lớp 10 Global Success (604)
- Tiếng Anh Lớp 10 iLearn Smart World (98)
- Tiếng anh Lớp 11 Friends Global (171)
- Tiếng anh Lớp 11 Global Success (368)
- Tiếng anh Lớp 11 iLearn Smart World (104)
- Tiếng Anh Lớp 12 cũ (168)
- Tiếng Anh Lớp 6 Friends Plus (114)
- Tiếng Anh Lớp 6 Global Success (174)
- Tiếng Anh Lớp 7 Friends Plus (160)
- Tiếng Anh Lớp 8 Friends plus (71)
- Tiếng anh Lớp 8 Global Success (79)
- Tiếng anh Lớp 8 iLearn Smart World (40)
- Tiếng Anh Lớp 9 Mới (211)
- Tin Học Lớp 10- CD (24)
- Tin Học Lớp 10- KNTT (33)
- Tin học Lớp 11 – KNTT (21)
- Tin Học Lớp 6 – CTST (41)
- Tin Học Lớp 6- KNTT (17)
- Tin Học Lớp 7- CTST (14)
- Tin Học Lớp 7- KNTT (16)
- Tin học Lớp 8 – CD (36)
- Tin học Lớp 8 – CTST (10)
- Tin học Lớp 8 – KNTT (5)
- Tin Học Lớp 9 (21)
- Toán 10 sách Chân trời sáng tạo (42)
- Toán Lớp 1 – KNTT (1)
- Toán Lớp 10- CD (44)
- Toán Lớp 10- CTST (39)
- Toán Lớp 10- KNTT (161)
- Toán Lớp 11 – CD (19)
- Toán Lớp 11 – CTST (44)
- Toán Lớp 11 – KNTT (46)
- Toán Lớp 12 (123)
- Toán Lớp 6 – CTST (62)
- Toán Lớp 6 – KNTT (102)
- Toán Lớp 7- CTST (52)
- Toán Lớp 7- KNTT (74)
- Toán Lớp 8 – CD (23)
- Toán Lớp 8 – CTST (21)
- Toán Lớp 8 – KNTT (34)
- Toán Lớp 9 (194)
- Tóm tắt Ngữ văn (16)
- Trắc nghiệm Ngữ Văn (75)
- Trắc nghiệm Toán 9 (61)
- Trải nghiệm hướng nghiệp Lớp 11 – KNTT (8)
- Văn mẫu 12 phân tích chuyên sâu (12)
- Văn mẫu 9 (273)
- Vật Lí Lớp 10- CD (39)
- Vật Lí Lớp 10- KNTT (61)
- Vật Lí Lớp 11 – CD (18)
- Vật lí Lớp 11 – CTST (20)
- Vật lí Lớp 11 – KNTT (26)
- Vật Lý Lớp 9 (217)