Giải bài tập SGK Toán lớp 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số là tài liệu tham khảo hữu ích dành cho các bạn học sinh, giúp các bạn ôn luyện kiến thức đồng thời cũng giúp học sinh học tốt môn Toán lớp 9. Mời các bạn tham khảo chi tiết bài viết dưới đây nhé.

  • Giải bài tập SGK Toán lớp 9 bài 7: Vị trí tương đối của hai đường tròn
  • Giải bài tập Toán 9 bài 8: Vị trí tương đối của hai đường tròn (tiếp theo)
  • Giải bài tập Toán lớp 9 bài 9: Ôn tập chương II. Đường tròn
  • Giải bài tập SGK Toán lớp 9 bài 2: Hệ hai phương trình bậc nhất hai ẩn
  • Giải bài tập SGK Toán lớp 9 bài 3: Giải hệ phương trình bằng phương pháp thế

Trả lời câu hỏi Toán 9 Tập 2 Bài 4 trang 17

Áp dụng quy tắc cộng đại số để biến đồi hệ (I), nhưng ở bước 1, hãy trừ từng vế hai phương trình của hệ (I) và viết ra các hệ phương trình mới thu được.

Giải bài tập SGK Toán lớp 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Lời giải

Giải bài tập SGK Toán lớp 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Trừ từng vế hai phương trình của hệ (I) ta được phương trình:

(2x – y) – (x + y) = 1 – 2 hay x – 2y = -1

Khi đó, ta thu được hệ phương trình mới:

Giải bài tập SGK Toán lớp 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Trả lời câu hỏi Toán 9 Tập 2 Bài 4 trang 17

Các hệ số của y trong hai phương trình của hệ (II) có đặc điểm gì?

Giải bài tập SGK Toán lớp 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Lời giải

Hệ số của y trong hai phương trình của hệ (II) đối nhau (có tổng bằng 0)

Trả lời câu hỏi Toán 9 Tập 2 Bài 4 trang 18

a) Nếu nhận xét về các hệ số của x trong hai phương trình của hệ (III).

b) Áp dụng quy tắc cộng đại số, hãy giải hệ (III) bằng cách trừ từng vế hai phương trình của (III).

Lời giải

a) Hệ số của x trong hai phương trình của hệ (III) giống nhau

Giải bài tập SGK Toán lớp 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Lấy phương trình thứ nhất trừ đi phương trình thứ hai vế với vế, ta được: 5y = 5

Do đó

Giải bài tập SGK Toán lớp 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Vậy hệ phương trình có nghiệm duy nhất (7/2;1)

Trả lời câu hỏi Toán 9 Tập 2 Bài 4 trang 18

Giải tiếp hệ (IV) bằng phương pháp đã nêu ở trường hợp thứ nhất.

Giải bài tập SGK Toán lớp 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Lời giải

Giải bài tập SGK Toán lớp 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Vậy hệ phương trình có nghiệm duy nhất (3; -1)

Trả lời câu hỏi Toán 9 Tập 2 Bài 4 trang 18

Nêu một cách khác để đưa hệ phương trình (IV) về trường hợp thứ nhất?

Lời giải

Chia cả 2 vế của phương trình thứ nhất cho 3 và 2 vế của phương trình thứ hai cho 2 ta được:

Giải bài tập SGK Toán lớp 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Bài 20 trang 18 SGK Toán 9 tập 2

Giải các hệ phương trình sau bằng phương pháp cộng đại số.

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

e) Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Hướng dẫn giải:

a. left{ begin{matrix}

3x+y=3 \

2x-y=7 \

end{matrix} right.

Leftrightarrow left{ begin{matrix}

5x=10 \

2x-y=7 \

end{matrix} right.(Cộng hai vế của hai phương trình)

Leftrightarrow left{ begin{matrix}

x=2 \

y=-3 \

end{matrix} right.

Vậy HPT có nghiệm duy nhất left( x;y right)=left( 2;-3 right)

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Trừ vế với vế của hai phương trình trong hệ, ta được:

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại sốGiải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Vậy hệ phương trình có nghiệm duy nhất là Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Nhân hai vế của phương trình thứ hai với 2, rồi trừ vế với vế của hai phương trình trong hệ, ta được:

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Vậy hệ phương trình có nghiệm duy nhất là (3; -2).

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Nhân hai vế của phương trình thứ nhất với 3, nhân hai vế của phương trình thứ hai với 2, rồi trừ vế với vế của hai phương trình trong hệ, ta được

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Vậy hệ phương trình có nghiệm duy nhất là (-1; 0).

e)

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Nhân hai vế của phương trình thứ nhất với 5 rồi trừ vế với vế của hai phương trình trong hệ, ta được:

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Vậy hệ phương trình có nghiệm duy nhất là (5; 3).

Bài 21 trang 18 SGK Toán 9 tập 2

Giải các hệ phương trình sau bằng phương pháp cộng đại số.

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Hướng dẫn giải:

a) Nhân cả hai vế của phương trình thứ nhất với -sqrt 2, rồi cộng từng vế hai phương trình, ta được:

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Vậy hệ phương trình đã cho có nghiệm duy nhất là:Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

b) Nhân hai vế của phương trình thứ nhất với Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số, rồi cộng từng vế hai phương trình.

Ta có Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Suy ra

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Vậy hệ phương trình đã cho có nghiệm duy nhất là Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Bài 22 trang 19 SGK Toán 9 tập 2

Giải các hệ phương trình sau bằng phương pháp cộng đại số:

Hướng dẫn giải:

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Nhân phương trình trên với 3, nhân phương trình dưới với 2, rồi cộng vế với vế của hai phương trình trong hệ, ta được:

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Vậy hệ đã cho có nghiệm duy nhất là Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Nhân hai vế phương trình trên với 2 rồi cộng hai vế của hai phương trình với nhau, ta được:

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Vậy hệ phương trình vô nghiệm.

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Đổi hỗn số về phân số rồi nhân hai vế của phương trình dưới với 3 sau đó trừ vế với vế của hai phương trình ta được:

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Vậy hệ phương trình có vô số nghiệm.

Bài 23 trang 19 SGK Toán 9 tập 2

Giải hệ phương trình sau:

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Hướng dẫn giải:

Xét hệ Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Trừ từng vế hai phương trình (1) cho (2), ta được:

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Thay (3) vào (1) ta được:

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Vậy hệ phương trình đã cho có nghiệm duy nhất là:Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Bài 24 trang 19 SGK Toán 9 tập 2

Giải hệ các phương trình:

a) Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Hướng dẫn giải:

a) Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Thực hiện nhân phá ngoặc và thu gọn, ta được:

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Trừ vế với vế của hai phương trình ta được:

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Vậy hệ đã cho có nghiệm duy nhất là Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Phá ngoặc và thu gọn vế trái của hai phương trình trong hệ, ta được:

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Vậy hệ phương trình đã cho có nghiệm duy nhất là (1; -1).

Bài 25 trang 19 SGK Toán 9 tập 2

Ta biết rằng: Một đa thức bằng đa thức 0 khi và chỉ khi tất cả các hệ số của nó bằng 0. Hãy tìm các giá trị của m và n để đa thức sau (với biến số x) bằng đa thức 0:

P(x) = (3m – 5n + 1)x + (4m – n -10).

Hướng dẫn giải:

Ta có

P(x) = (3m – 5n + 1)x + (4m – n -10) có hai hệ số là a=(3m – 5n + 1) và b=(4m – n -10).

Do đó Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Vậy m=3, n=2 thì đa thức P(x) =0.

Bài 26 trang 19 SGK Toán 9 tập 2

Xác định a và b để đồ thị của hàm số y = ax + b đi qua điểm A và B trong mỗi trường hợp sau:

a)A(2; -2) và B(-1; 3)

b) A(-4; -2) và B(2; 1)

c) A(3; -1) và B(-3; 2)

d)Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số và B(0; 2)

Hướng dẫn giải:

a)A(2; -2) và B(-1; 3)

Hàm số y=ax+b (1)

Vì đồ thị hàm số đi qua A(2; -2), thay x=2, y=-2 vào (1), ta được: -2=2a + b.

Vì đồ thị hàm số đi qua B(-1; 3), thay x=-1, y=3 vào (1), ta được: 3=-a + b.

Ta có hệ phương trình ẩn là a và b.

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Vậy Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

b) A(-4; -2) và B(2; 1)

Hàm số y=ax+b (1)

Vì đồ thị hàm số đi qua A(-4; -2), thay x=-4, y=-2 vào (1), ta được: -2=-4a + b .

Vì đồ thị hàm số đi qua B(2; 1), thay x=2, y=1 vào (1), ta được: 1=2a + b.

Ta có hệ phương trình ẩn là a, b:

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Vậy Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

c) A(3; -1) và B(-3; 2)

Hàm số y=ax+b (1)

Vì đồ thị hàm số đi qua A(3; -1), thay x=3, y=-1 vào (1), ta được: -1=3a + b

Vì đồ thị hàm số đi qua B(-3; 2), thay x=-3,y=2 vào (1), ta được: 2=-3a + b.

Ta có hệ phương trình ẩn a, b:

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Vậy Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

d)Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số và B(0; 2)

Hàm số y=ax+b (1)

Vì đồ thị hàm số đi qua Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số, thay Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số y=2 vào (1), ta được: Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số .

Vì đồ thị hàm số đi qua B(0; 2), thay x=0, y=2 vào (1), ta được: 2= 0 . a + b .

Ta có hệ phương trình ẩn là a, b.

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Vậy a=0, b=2.

Bài 27 trang 20 SGK Toán 9 tập 2

Bằng cách đặt ẩn phụ (theo hướng dẫn), đưa các hệ phương trình sau về dạng hệ hai phương trình bậc nhật hai ẩn rồi giải:

a) Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Hướng dẫn.

Đặt Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Hướng dẫn. Đặt Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Hướng dẫn giải:

a) Điền kiện x ≠ 0, y ≠ 0.

Đặt Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số (với Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số).

Phương trình đã cho trở thành:

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Suy ra Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Vậy hệ đã cho có nghiệm duy nhất Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Hướng dẫn. Đặt Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Điều kiện Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Đặt Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số (với Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số ).

Phương trình đã cho trở thành:

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Suy ra Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Vậy hệ đã cho có nghiệm duy nhất Giải Toán 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Bài 30 trang 22 SGK Toán 9 tập 2

Một ô tô đi từ A và dự định đến B lúc 12 giờ trưa. Nếu xe chạy với vận tốc 35 km/h

Đề bài

Một ô tô đi từ A và dự định đến B lúc 12 giờ trưa. Nếu xe chạy với vận tốc 35 km/h thì sẽ đến B chậm 2 giờ so với quy định. Nếu xe chạy với vận tốc 50 km/h thì sẽ đến B sớm 1 giờ so với quy định. Tính độ dài quãng đường AB và thời điểm xuất phát của ôtô tại A.

Sử dụng công thức: S=v.t, trong đó S là quãng đường đi được (km); v là vận tốc (km/h); t là thời gian (h).

Lời giải chi tiết

Gọi x (km) là độ dài quãng đường AB, y (giờ) là thời gian dự định đi từ A để đến B đúng lúc 12 giờ trưa. Điều kiện x > 0, y > 1 (do ôtô đến B sớm hơn 1 giờ).

+) Trường hợp 1:

Xe đi với vận tốc 35 km (h)

Xe đến B chậm hơn 2 giờ nên thời gian đi hết là: y+2 (giờ)

Quãng đường đi được là: 35(y+2) (km)

Vì quãng đường không đổi nên ta có phương trình: x=35(y+2) (1)

+) Trường hợp 2:

Xe đi với vận tốc: 50 km/h

Vì xe đến B sớm hơn 1 giờ nên thời gian đi hết là: y-1 (giờ)

Quãng đường đi được là: 50(y-1) (km)

Vì quãng đường không đổi nên ta có phương trình: x=50(y-1) (2)

Từ (1) và (2) ta có hệ phương trình:

left{begin{matrix} x = 35(y + 2) & & \ x = 50(y - 1) & & end{matrix}right. Leftrightarrow left{begin{matrix} x = 35y + 70 & & \ x = 50y - 50 & & end{matrix}right.

Leftrightarrow left{begin{matrix} x-35y=70  (1) \ x- 50y=-50  (2) end{matrix}right.

Lấy vế trừ vế của (1) cho (2), ta được:

left{begin{matrix} 15y=120 \ x-50y=-50 end{matrix}right. Leftrightarrow left{begin{matrix} y=8 \ x=-50+50y end{matrix}right.

left{begin{matrix} y=8 \ x=-50+50.8 end{matrix}right. Leftrightarrow left{begin{matrix} y=8 \ x=350 end{matrix}right. (thỏa mãn)

Vậy quãng đường AB là 350km.

Thời điểm xuất phát của ô tô tại AA là: 12 − 8 = 412 − 8 = 4 giờ.

………………………………

Ngoài Giải bài tập SGK Toán lớp 9 bài 4: Giải hệ phương trình bằng phương pháp cộng đại số. Mời các bạn học sinh còn có thể tham khảo các đề thi học học kì 1 lớp 9, đề thi học học kì 2 lớp 9 các môn Toán, Văn, Anh, Hóa, Lý, Địa, Sinh mà chúng tôi đã sưu tầm và chọn lọc. Với đề thi học kì 2 lớp 9 này giúp các bạn rèn luyện thêm kỹ năng giải đề và làm bài tốt hơn. Chúc các bạn ôn thi tốt