Toán 12 – Bất phương trình mũ và bất phương trình logarit

Để giúp các bạn học sinh có kết quả cao hơn trong học tập, TaiLieuViet mời các bạn tham khảo tài liệu Giải SBT Toán 12 bài 6: Bất phương trình mũ và bất phương trình logarit, với nội dung được cập nhật chi tiết và chính xác sẽ là nguồn thông tin hay để giúp các bạn học sinh học tốt hơn môn Toán 12.

Giải SBT Toán 12 bài 6

Bài 2.39 trang 131, 132 Sách bài tập (SBT) Giải tích 12

Giải các bất phương trình mũ sau:

a) {3^{|x - 2|}} < 9

b) {4^{|x + 1|}} > 16

c) {2^{ - {x^2} + 3x}} < 4

d) {(frac{7}{9})^{2{x^2} - 3x}} ge frac{9}{7}

e) {11^{sqrt {x + 6} }} ge {11^x}

g) {2^{2x - 1}} + {2^{2x - 2}} + {2^{2x - 3}} ge 448

h) {16^x} - {4^x} - 6 le 0

i) frac{{{3^x}}}{{{3^x} - 2}} < 3

Hướng dẫn làm bài:

a) {3^{|x - 2|}} < {3^2}

Leftrightarrow |x - 2| < 2

Leftrightarrow - 2 < x - 2 < 2

Leftrightarrow 0 < x < 4

b)

{4^{|x + 1|}} > {4^2}

 Leftrightarrow |x + 1| > 2 Leftrightarrow left[ {begin{array}{*{20}{c}}
{x + 1 > 2}\
{x + 1 < - 2}
end{array}} right. Leftrightarrow left[ {begin{array}{*{20}{c}}
{x > 1}\
{x < - 3}
end{array}} right.

c)

{2^{ - {x^2} + 3x}} < {2^2}

Leftrightarrow - {x^2} + 3x < 2 

 Leftrightarrow {x^2} - 3x + 2 > 0 Leftrightarrow left[ {begin{array}{*{20}{c}}
{x < 1}\
{x > 2}
end{array}} right.

d)

{(frac{7}{9})^{2{x^2} - 3x}} ge {(frac{7}{9})^{ - 1}}

Leftrightarrow 2{x^2} - 3x le - 1

Leftrightarrow 2{x^2} - 3x + 1 le 0 Leftrightarrow frac{1}{2} le x le 1

e)

eqalign{& sqrt {x + 6} ge x Leftrightarrow left[ {matrix{{left{ {matrix{{x + 6 ge 0} cr {x < 0} cr} } right.} cr {left{ {matrix{{x ge 0} cr {x + 6 ge {x^2}} cr} } right.} cr} } right. cr & Leftrightarrow left[ {matrix{{left{ {matrix{{x ge - 6} cr {x < 0} cr} } right.} cr {left{ {matrix{{x ge 0} cr {{x^2} - x - 6 le 0} cr} } right.} cr} } right. Leftrightarrow left[ {matrix{{ - 6 le x < 0} cr {left{ {matrix{{ - 2 le x le 3} cr {x ge 0} cr} } right.} cr} } right. cr & Leftrightarrow left[ {matrix{{ - 6 le x < 0} cr {0 le x le 3} cr} } right. Leftrightarrow - 6 le x le 3 cr}

g)

frac{1}{2}{.2^{2x}} + frac{1}{4}{.2^{2x}} + frac{1}{8}{.2^{2x}} ge 448

Leftrightarrow {2^{2x}} ge 512 Leftrightarrow {2^{2x}} ge {2^9} Leftrightarrow x ge frac{9}{2}

eqalign{& {{{3^x}} over {{3^x} - 2}} - 3 < 0 Leftrightarrow {{ - {{2.3}^x} + 6} over {{3^x} - 2}} < 0 cr & Leftrightarrow {{{3^x} - 3} over {{3^x} - 2}} > 0 Leftrightarrow left[ {matrix{{{3^x} > 3} cr {{3^x} < 2} cr} } right. Leftrightarrow left[ {matrix{{x > 1} cr {x < {{log }_3}2} cr} } right. cr}

Bài 2.40 trang 132 Sách bài tập (SBT) Giải tích 12

Giải các bất phương trình logarit sau:

a) {log _{frac{1}{3}}}(x - 1) ge - 2

b) {log _3}(x - 3) + {log _3}(x - 5) < 1

c) {log _{frac{1}{2}}}frac{{2{x^2} + 3}}{{x - 7}} < 0

d) {log _{frac{1}{3}}}{log _2}{x^2} > 0

e) frac{1}{{5 - log x}} + frac{2}{{1 + log x}} < 1

g) 4{log _4}x - 33{log _x}4 le 1

Hướng dẫn làm bài:

a) 0 < x - 1 le {(frac{1}{3})^{ - 2}} Leftrightarrow 1 < x le 10

b)

eqalign{& left{ {matrix{{x > 5} cr {{{log }_3}{rm{[}}(x - 3)(x - 5){rm{]}} < {{log }_3}3} cr} } right. cr & Leftrightarrow left{ {matrix{{x > 5} cr {{x^2} - 8x + 12 < 0} cr} Leftrightarrow left{ {matrix{{x > 5} cr {2 < x < 6} cr} } right.} right. cr & Leftrightarrow 5 < x < 6 cr}

c)

eqalign{& left{ {matrix{{x - 7 > 0} cr {{{2{x^2} + 3} over {x - 7}} > 1} cr} Leftrightarrow left{ {matrix{{x > 7} cr {2{x^2} + 3 > x - 7} cr} } right.} right. cr & Leftrightarrow left{ {matrix{{x > 7} cr {2{x^2} - x + 10 > 0} cr} Leftrightarrow left{ {matrix{{x > 7} cr {x in R} cr} Leftrightarrow x > 7} right.} right. cr}

d)

eqalign{
& {log _{{1 over 3}}}{log _2}{x^2} > {log _{{1 over 3}}}1 cr 
& Leftrightarrow {log _2}{x^2} < 1 cr 
& Leftrightarrow {log _2}{x^2} < {log _2}2 cr 
& Leftrightarrow 0 < {x^2} < 2 cr}

Leftrightarrow 0 < |x| < sqrt 2 Leftrightarrow left[ {matrix{{ - sqrt 2 < x < 0} cr {0 < x < sqrt 2 } cr} } right.

e) Đặt t = log x với điều kiện t ne 5,t ne - 1 ta có:

eqalign{
& {1 over {5 - t}} + {2 over {1 + t}} < 1 Leftrightarrow {{t + 1 + 10 - 2t} over {5 + 4t - {t^2}}} - 1 < 0 cr 
& Leftrightarrow {{{t^2} - 5t + 6} over {{t^2} - 4t - 5}} > 0 Leftrightarrow {{(t - 2)(t - 3)} over {(t + 1)(t - 5)}} > 0 cr & Leftrightarrow left[ {matrix{{t < - 1} cr {2 < t < 3} cr {t > 5} cr} } right. cr}

Suy ra log x < -1 hoặc 2 < log x < 3 hoặc log x > 5.

Vậy x < frac{1}{{10}} hoặc 100 < x < 1000 hoặc x > 100 000.

g) Với điều kiện x > 0,x ne 1 đặt t = {log _4}x, ta có: 4t - frac{{33}}{t} le 1

eqalign{& Leftrightarrow {{4{t^2} - t - 33} over t} le 0 Leftrightarrow {{(4t + 11)(t - 3)} over t} le 0 cr & Leftrightarrow left[ {matrix{{t le - {{11} over 4}} cr {0 < t le 3} cr} } right. cr & Leftrightarrow left[ {matrix{{{{log }_4}x le - {{11} over 4}} cr {0 < {{log }_4}x le 3} cr} } right. Leftrightarrow left[ {matrix{{0 < x le {4^{ - {{11} over 4}}}} cr {1 < x le 64} cr} } right. cr}

Bài 2.41 trang 132 Sách bài tập (SBT) Giải tích 12

Giải các bất phương trình sau bằng đồ thị:

a) {(frac{1}{2})^x} < x - frac{1}{2}

b) {(frac{1}{3})^x} ge x + 1

c) {log _{frac{1}{3}}}x > 3x

d) {log _2}x le 6 - x

Hướng dẫn làm bài:

a) Vẽ đồ thị của hàm số y = {(frac{1}{2})^x} và đường thẳng y = x - frac{1}{2} trên cùng một hệ trục tọa độ (H.65), ta thấy chúng cắt nhau tại điểm có hoành độ x = 1. Với x > 1 đồ thị của hàm số y = {(frac{1}{2})^x} nằm phía dưới đường thẳng y = x - frac{1}{2}. Vậy tập nghiệm của bất phương trình đã cho là (1; + infty )

Giải SBT Toán 12 bài 6: Bất phương trình mũ và bất phương trình logarit

b) Vẽ đồ thị của hàm số y = {(frac{1}{3})^x} và đường thẳng y = x + 1 trên cùng một hệ trục tọa độ (H.66), ta thấy chúng cắt nhau tại điểm có hoành độ x = 0.

Khi x < 0 đồ thị của hàm số y = {(frac{1}{3})^x}nằm phía trên đường thẳng y = x + 1. Vậy tập nghiệm của bất phương trình đã cho là ( - infty ;0]

c) Vẽ đồ thị của hàm số y = {log _{frac{1}{3}}}x và đường thẳng y = 3x trên cùng một hệ trục tọa độ ta thấy chúng cắt nhau tại điểm có hoành độ x = frac{1}{3} (H.67)

Khi x < frac{1}{3} đồ thị của hàm số y = {log _{frac{1}{3}}}x nằm phía trên đường thẳng y = 3x.

Vậy tập nghiệm của bất phương trình đã cho là ( - infty ;frac{1}{3}).

Giải SBT Toán 12 bài 6: Bất phương trình mũ và bất phương trình logarit

d) Vẽ đồ thị của hàm số y=log2x và đường thẳng y = 6 – x trên cùng một hệ trục tọa độ, ta thấy chúng cắt nhau tại điểm có hoành độ x = 4 (H.68).

Khi x < 4, đồ thị của hàm số y=log2x nằm phía dưới y = 6 – x.

Vậy tập nghiệm của bất phương trình đã cho là (−∞;4]

Bài 2.42 trang 132 Sách bài tập (SBT) Giải tích 12

Giải bất phương trình: {log _{frac{1}{3}}}({log _2}frac{{2x + 3}}{{x + 1}}) ge 0

Trả lời:

Đáp số: x < – 2.

———————————

Trên đây TaiLieuViet.com đã giới thiệu tới bạn đọc tài liệu: Giải SBT Toán 12 bài 6: Bất phương trình mũ và bất phương trình logarit. Để có kết quả cao hơn trong học tập, TaiLieuViet xin giới thiệu tới các bạn học sinh tài liệu Giải bài tập Toán lớp 12, Giải bài tập Hóa học lớp 12, Giải bài tập Vật Lí 12 mà TaiLieuViet tổng hợp và đăng tải.