Mục Lục
ToggleHình học 12 – Phương trình đường thẳng
TaiLieuViet xin giới thiệu tới bạn đọc tài liệu Giải SBT Toán 12 bài 3: Phương trình đường thẳng, tài liệu kèm theo lời giải chi tiết sẽ giúp các bạn học sinh có kết quả cao hơn trong học tập. Mời các bạn học sinh và thầy cô cùng tham khảo.
Giải SBT Toán 12 bài 3
Bài 3.31 trang 129 sách bài tập (SBT) – Hình học 12
Viết phương trình tham số, phương trình chính tắc của đường thẳng Δ trong các trường hợp sau:
a) Δ đi qua điểm A(1; 2; 3) và có vecto chỉ phương a→=(3;3;1);
b) Δ đi qua điểm B(1; 0; -1) và vuông góc với mặt phẳng (α): 2x – y + z + 9 = 0
c) Δ đi qua hai điểm C(1; -1; 1) và D(2; 1; 4)
Hướng dẫn làm bài:
a) Phương trình tham số của đường thẳng Δ đi qua điểm A(1; 2; 3) và có vecto chỉ phương a→=(3;3;1) là {x=1+3t;y=2+3t;z=3+t
Phương trình chính tắc của Δ là x−1/3=y−2/3=z−3/1
b) Δ⊥(α)⇒aΔ→=aα→=(2;−1;1)
Phương trình tham số của Δ là {x=1+2t;y=−t;z=−1+t
Phương trình chính tắc của Δ là x−1/2=y/−1=z+1/1
c) Δ đi qua hai điểm C và D nên có vecto chỉ phương CD→=(1;2;3)
Vậy phương trình tham số của Δ là {x=1+t;y=−1+2t;z=1+3t
Phương trình chính tắc của Δ là x−1;1=y+1/2=z−1/3
Bài 3.32 trang 129 sách bài tập (SBT) – Hình học 12
Viết phương trình của đường thẳng Δ nằm trong mặt phẳng (α): x +2z = 0 và cắt hai đường kính
Gọi A và B lần lượt là giao điểm của d1 và d2 với (α). Đường thẳng Δ cần tìm chính là đường thẳng AB.
Ta có: A(1−t;t;4t)∈d1
A∈(α)⇔t+4.(2t)=0⇔t=0
Suy ra: A(1; 0; 0)
Ta có: B(2−t′;4+2t′;4)∈d2
B∈(α)⇔4+2t′+8=0⇔t′=−6
Suy ra B(8; -8; 4)
Δ đi qua A, B nên có vecto chỉ phương aΔ→=AB→=(7;−8;4)
Phương trình chính tắc của Δ là: x−1/7=y/−8=z/4
Bài 3.33 trang 129 sách bài tập (SBT) – Hình học 12
Xét vị trí tương đối của các cặp đường thẳng d và d’ cho bởi các phương trình sau:
a) d:x+1/1=y−1/2=z+3/3 và d′:x−1/3=y−5/2=z−4/2
Suy ra n→=ad→∧ad′→=(−2;7;−4)
Ta có M0(−1;1;−2)∈d,M0′(1;5;4)∈d′⇒M0M0′→=(2;4;6)
Ta có n→.M0M0′→=−4+28−24=0. Vậy đường thẳng d và d’ đồng phẳng và khác phương, nên d và d’ cắt nhau.
b) Ta có ad→=(1;1;−1) và ad′=(2;2;−2).M0(0;1;2)∈d
Vì {ad′→=2ad→;M0∉d′ (tọa độ M0 không thỏa mãn d’) nên hai đường thẳng d và d’ song song.
c) d có vecto chỉ phương ad→=(−1;3;−2)
d’ có vecto chỉ phương ad′→=(0;0;5)
Gọi n→=ad→∧ad′→=(15;5;0)≠0→
Ta có M0(0;0;−1)∈d
M′0(0;9;0)∈d′⇒M0M0′→=(0;9;1),n→.M0M0′→=45≠0
Vậy d và d’ là hai đường thẳng chéo nhau.
Bài 3.34 trang 129 sách bài tập (SBT) – Hình học 12
Tìm a để hai đường thẳng sau đây song song:
Hướng dẫn làm bài:
Ta có ad→=(1;a;−1) và ad′→=(2;4;−2)
d//d′⇒1/2=a/4=−1/−2⇒a=2
Khi đó M′0(1;2;2) thuộc d’ và M’0 không thuộc d. Vậy d // d’ ⟺ a = 2.
Bài 3.35 trang 129 sách bài tập (SBT) – Hình học 12
Xét vị trí tương đối của đường thẳng d với mặt phẳng (α) trong các trường hợp sau
Hướng dẫn làm bài:
a) Thay x, y, z trong phương trình tham số của đường thẳng d vào phương trình tổng quát của mặt phẳng (α) ta được: t + 2(1 + 2t) + (1 – t) – 3 = 0
⟺ 4t = 0 ⟺ t = 0
Vậy đường thẳng d cắt mặt phẳng (α) tại M0(0; 1; 1).
b) Thay x, y, z trong phương trình tham số của d vào phương trình tổng quát của (α) ta được: (2 – t) +(2 + t) + 5 = 0 ⟺ 0t = -9
Phương trình vô nghiệm, vậy đường thẳng d song song với (α)
c) Thay x, y, z trong phương trình tham số của d vào phương trình tổng quát của (α) ta được: (3 – t) + (2 – t) + (1 + 2t) – 6 = 0 ⟺ 0t = 0
Phương trình luôn thỏa mãn với mọi t. Vậy d chứa trong (α)
Bài 3.36 trang 130 sách bài tập (SBT) – Hình học 12
Tính khoảng cách từ điểm A(1; 0; 1) đến đường thẳng Δ:x−1/2=y/2=z/1
Hướng dẫn làm bài:
Đường thẳng Δ đi qua điểm M0(1; 0; 0) và có vecto chỉ phương a→=(2;2;1).
Ta có M0A→=(0;0;1),n→=a→∧M0A→=(2;−2;0).
d(A,Δ)=|n→|/|a→|=√4+4+0/√4+4+1=2√2/3
Vậy khoảng cách từ điểm A đến Δ là 2√2/3
Bài 3.37 trang 130 sách bài tập (SBT) – Hình học 12
Cho đường thẳng Δ: x+3/2=y+1/3=z+1/2 và mặt phẳng (α): 2x – 2y + z + 3 = 0
a) Chứng minh rằng Δ song song với (α).
b) Tính khoảng cách giữa Δ và (α)
Hướng dẫn làm bài:
a) Ta có: aΔ→=(2;3;2) và nα→=(2;−2;1)
aΔ→.nα→=4−6+2=0 (1)
Xét điểm M0(-3; -1; -1) thuộc Δ, ta thấy tọa độ M0 không thỏa mãn phương trình của (α). Vậy M0∉(α) (2).
Từ (1) và (2) ta suy ra Δ//(α)
b) d(Δ,(α))=d(M0,(α))=|2.(−3)−2.(−1)+(−1)+3|/√4+4+1=2/3
Vậy khoảng cách giữa đường thẳng Δ và mặt phẳng (α) là 2/3.
Bài 3.38 trang 130 sách bài tập (SBT) – Hình học 12
Tính khoảng cách giữa các cặp đường thẳng Δ và Δ′ trong các trường hợp sau:
Hướng dẫn làm bài:
a) Gọi (α) là mặt phẳng chứa Δ và song song với Δ′. Hai vecto có giá song song hoặc nằm trên (α) là: a→=(1;−1;0) và a→′=(−1;1;1). Suy ra nα→=(−1;−1;0)
(α) đi qua điểm M1(1; -1; 1) thuộc Δ và có vecto pháp tuyến: nα′→=(1;1;0)
Vậy phưong trình của mặt phẳng (α) có dạng x – 1 + y + 1= hay x + y = 0
Ta có: M2((2; 2; 0) thuộc đường thẳng Δ′
d(Δ,Δ′)=d(M2,(α))=|2+2|/√1+1=2√2
b) Hai đường thẳng Δ và Δ′ có phương trình là:
Phương trình mặt phẳng (α) chứa Δ và song song với Δ′ là 9x + 5y – 2z – 22 = 0
Lấy điểm M’(0; 2; 0) trên Δ′ .
Ta có d(Δ,Δ′)=d(M′,(α))=|5.(2)−22|/√81+25+4=12/√110
Vậy khoảng cách giữa hai đường thẳng Δ và Δ′ là 12/√110
Bài 3.39 trang 130 sách bài tập (SBT) – Hình học 12
Cho hai đường thẳng Δ:x−1/2=y+3/1=z−4/−2
Δ′:x+2/−4=y−1/−2=z+1/4
a) Xét vị trí tương đối giữa Δ và Δ′;
b) Tính khoảng cách giữa Δ và Δ′.
Hướng dẫn làm bài:
a) Δ đi qua điểm M0(1; -3; 4) và có vecto chỉ phương a→=(2;1;−2)
Δ′ đi qua điểm M0’(-2; 1; -1) và có vecto chỉ phương a′→=(−4;−2;4)
Ta có {a′→=2a→;M0∉Δ′
Vậy Δ′ song song với Δ
b) Ta có M0M0′→=(−3;4;−5)
a→=(2;1;−2)
n→=M0M0′→∧a→=(−3;−16;−11)
d(Δ,Δ′)=M′0H=|n→|/|a→|=√9+256+121/√4+1+4=√386/3
Bài 3.40 trang 130 sách bài tập (SBT) – Hình học 12
Cho điểm M(2; -1; 1) và đường thẳng Δ:x−1/2=y+1/−1=z/2
a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên đường thẳng Δ;
b) Tìm tọa độ điểm M’ đối xứng với M qua đường thẳng Δ.
Hướng dẫn làm bài:
a) Phương trình tham số của
a) Phương trình tham số của Δ:x=1+2t;y=−1−t;z=2t
Xét điểm H(1+2t;−1−t;2t)∈Δ
Ta có MH→=(2t−1;−t;2t−1)
aΔ→=(2;−1;2)
H là hình chiếu vuông góc của M trên Δ⇔MH→.aΔ→=0
⇔2(2t−1)+t+2(2t−1)=0⇔t=4/9
Ta suy ra tọa độ điểm H(17/9;−13/9;8/9)
b) H là trung điểm của MM’, suy ra xM’ + xM = 2xH
Suy ra xM′=2xH−xM=34/9−2=16/9
Tương tự, ta được yM′=2yH−yM=−26/9+1=−17/9
zM′=2zH−zM=16/9−1=7/9
Vậy M′(16/9;−17/9;7/9)
———————————
Trên đây TaiLieuViet.com đã giới thiệu tới bạn đọc tài liệu: Giải SBT Toán 12 bài 3: Phương trình đường thẳng. Để có kết quả cao hơn trong học tập, TaiLieuViet xin giới thiệu tới các bạn học sinh tài liệu Giải bài tập Toán lớp 12, Giải bài tập Hóa học lớp 12, Giải bài tập Vật Lí 12 mà TaiLieuViet tổng hợp và đăng tải.
Related posts
Tài liệu nổi bật
Categories
- Âm Nhạc – Mỹ Thuật Lớp 9 (17)
- Âm nhạc lớp 6 – KNTT (31)
- Âm Nhạc Lớp 7- CTST (23)
- Bài tập Toán 9 (8)
- Chưa phân loại (32)
- Chuyên đề Hóa học 12 (196)
- Chuyên đề Sinh học lớp 12 (61)
- Chuyên đề Toán 9 (50)
- Công Nghệ Lớp 10- CD (58)
- Công Nghệ Lớp 10- KNTT (52)
- Công nghệ Lớp 11 – KNTT (22)
- Công Nghệ Lớp 6 – CTST (15)
- Công Nghệ Lớp 6 – KNTT (16)
- Công Nghệ Lớp 7- CTST (18)
- Công Nghệ Lớp 7- KNTT (19)
- Công nghệ Lớp 8 – CD (21)
- Công nghệ Lớp 8 – CTST (18)
- Công nghệ Lớp 8 – KNTT (7)
- Công Nghệ Lớp 9 (114)
- Đề thi học kì 2 lớp 9 môn Văn (35)
- Địa Lí Lớp 10- CD (99)
- Địa Lí Lớp 10- KNTT (77)
- Địa lí Lớp 11 – CD (31)
- Địa lí Lớp 11 – CTST (23)
- Địa lí Lớp 11 – KNTT (19)
- Địa Lí Lớp 12 (134)
- Địa lí Lớp 6 – CTST (36)
- Địa lí Lớp 6 – KNTT (30)
- Địa Lí Lớp 7- CTST (22)
- Địa Lí Lớp 7- KNTT (19)
- Địa Lí Lớp 9 (290)
- GDCD 12 (28)
- GDCD Lớp 6 – CTST (8)
- GDCD Lớp 6 – KNTT (12)
- GDCD Lớp 9 (94)
- Giải bài tập Địa Lí 12 (12)
- Giải bài tập SGK Toán 12 (8)
- Giải bài tập Sinh học 12 (45)
- Giải SBT Hóa học 12 (71)
- Giải vở BT Văn 9 (122)
- Giáo Dục Công Dân Lớp 7- CTST (12)
- Giáo Dục Công Dân Lớp 7- KNTT (10)
- Giáo dục công dân Lớp 8 – CD (10)
- Giáo dục công dân Lớp 8 – CTST (10)
- Giáo dục công dân Lớp 8 – KNTT (10)
- Giáo Dục Quốc Phòng Lớp 10- CD (12)
- Giáo Dục Quốc Phòng Lớp 10- KNTT (12)
- Hóa Học Lớp 10- CD (30)
- Hóa Học Lớp 10- KNTT (61)
- Hoá Học Lớp 11 – CD (19)
- Hoá học Lớp 11 – CTST (19)
- Hoá học Lớp 11 – KNTT (25)
- Hóa Học Lớp 12 (130)
- Hóa Học Lớp 9 (717)
- Hoạt Động Trải Nghiệm Lớp 10- KNTT (52)
- Hoạt Động Trải Nghiệm Lớp 7- CTST (40)
- Hoạt Động Trải Nghiệm Lớp 7- KNTT (16)
- Hoạt động trải nghiệm Lớp 8 – CD (19)
- Hoạt động trải nghiệm Lớp 8 – CTST (9)
- Hoạt động trải nghiệm Lớp 8 – KNTT (18)
- Khoa học tự nhiên Lớp 6 – CTST (46)
- Khoa học tự nhiên Lớp 6 – KNTT (57)
- Khoa Học Tự Nhiên Lớp 7- CTST (51)
- Khoa học tự nhiên Lớp 8 – CD (51)
- Khoa học tự nhiên Lớp 8 – CTST (33)
- Khoa học tự nhiên Lớp 8 – KNTT (37)
- Kinh Tế & Pháp Luật Lớp 10 – CD (21)
- Kinh tế & Pháp luật Lớp 11 – CD (21)
- Kinh tế & Pháp luật Lớp 11 – CTST (11)
- Kinh tế & Pháp luật Lớp 11 – KNTT (11)
- Lịch Sử Lớp 10- CD (34)
- Lịch Sử Lớp 10- CTST (20)
- Lịch Sử Lớp 10- KNTT (42)
- Lịch sử Lớp 11 – CTST (13)
- Lịch sử Lớp 11 – KNTT (13)
- Lịch sử Lớp 6 – CTST (21)
- Lịch sử Lớp 6 – KNTT (22)
- Lịch Sử Lớp 7- CTST (19)
- Lịch sử lớp 7- KNTT (18)
- Lịch Sử Lớp 9 (148)
- Lịch sử và Địa lí Lớp 8 – CTST (40)
- Lịch sử và Địa lí Lớp 8 – KNTT (33)
- Lý thuyết Địa lý 12 (4)
- Lý thuyết Lịch sử lớp 9 (33)
- Lý thuyết Ngữ Văn (83)
- Lý thuyết Ngữ Văn 12 (18)
- Lý thuyết Sinh học 12 (41)
- Mở bài – Kết bài hay (55)
- Mở bài lớp 12 hay (24)
- Nghị luận xã hội (34)
- Ngữ Văn Lớp 10- CD (113)
- Ngữ Văn Lớp 10- CTST (79)
- Ngữ Văn Lớp 10- KNTT (198)
- Ngữ Văn Lớp 11 – CD (51)
- Ngữ văn Lớp 11 – CTST (89)
- Ngữ Văn Lớp 11 – KNTT (107)
- Ngữ Văn Lớp 12 (379)
- Ngữ Văn Lớp 6 – KNTT (293)
- Ngữ Văn Lớp 7- CTST (103)
- Ngữ Văn Lớp 7- KNTT (66)
- Ngữ văn Lớp 8 – CD (48)
- Ngữ văn Lớp 8 – CTST (123)
- Ngữ văn Lớp 8 – KNTT (196)
- Ngữ Văn Lớp 9 (28)
- Phân tích các tác phẩm lớp 12 (12)
- Sinh Học Lớp 10- CD (49)
- Sinh Học Lớp 10- CTST (61)
- Sinh Học Lớp 10- KNTT (71)
- Sinh Học Lớp 11 – CD (16)
- Sinh học Lớp 11 – CTST (18)
- Sinh học Lớp 11 – KNTT (18)
- Sinh Học Lớp 9 (229)
- Soạn Anh 12 mới (86)
- Soạn văn 9 (50)
- SOẠN VĂN 9 BÀI 1 (50)
- SOẠN VĂN 9 BÀI 2 (50)
- Tác giả – Tác phẩm (41)
- Tác giả – Tác phẩm Ngữ Văn 12 (13)
- Thi THPT QG môn Địa lý (12)
- Thi THPT QG môn Sinh (8)
- Tiếng Anh Lớp 10 Friends Global (57)
- Tiếng Anh Lớp 10 Global Success (604)
- Tiếng Anh Lớp 10 iLearn Smart World (98)
- Tiếng anh Lớp 11 Friends Global (171)
- Tiếng anh Lớp 11 Global Success (368)
- Tiếng anh Lớp 11 iLearn Smart World (104)
- Tiếng Anh Lớp 12 cũ (168)
- Tiếng Anh Lớp 6 Friends Plus (114)
- Tiếng Anh Lớp 6 Global Success (174)
- Tiếng Anh Lớp 7 Friends Plus (160)
- Tiếng Anh Lớp 8 Friends plus (71)
- Tiếng anh Lớp 8 Global Success (79)
- Tiếng anh Lớp 8 iLearn Smart World (40)
- Tiếng Anh Lớp 9 Mới (211)
- Tin Học Lớp 10- CD (24)
- Tin Học Lớp 10- KNTT (33)
- Tin học Lớp 11 – KNTT (21)
- Tin Học Lớp 6 – CTST (41)
- Tin Học Lớp 6- KNTT (17)
- Tin Học Lớp 7- CTST (14)
- Tin Học Lớp 7- KNTT (16)
- Tin học Lớp 8 – CD (36)
- Tin học Lớp 8 – CTST (10)
- Tin học Lớp 8 – KNTT (5)
- Tin Học Lớp 9 (21)
- Toán 10 sách Chân trời sáng tạo (42)
- Toán Lớp 1 – KNTT (1)
- Toán Lớp 10- CD (44)
- Toán Lớp 10- CTST (39)
- Toán Lớp 10- KNTT (161)
- Toán Lớp 11 – CD (19)
- Toán Lớp 11 – CTST (44)
- Toán Lớp 11 – KNTT (46)
- Toán Lớp 12 (123)
- Toán Lớp 6 – CTST (62)
- Toán Lớp 6 – KNTT (102)
- Toán Lớp 7- CTST (52)
- Toán Lớp 7- KNTT (74)
- Toán Lớp 8 – CD (23)
- Toán Lớp 8 – CTST (21)
- Toán Lớp 8 – KNTT (34)
- Toán Lớp 9 (194)
- Tóm tắt Ngữ văn (16)
- Trắc nghiệm Ngữ Văn (75)
- Trắc nghiệm Toán 9 (61)
- Trải nghiệm hướng nghiệp Lớp 11 – KNTT (8)
- Văn mẫu 12 phân tích chuyên sâu (12)
- Văn mẫu 9 (273)
- Vật Lí Lớp 10- CD (39)
- Vật Lí Lớp 10- KNTT (61)
- Vật Lí Lớp 11 – CD (18)
- Vật lí Lớp 11 – CTST (20)
- Vật lí Lớp 11 – KNTT (26)
- Vật Lý Lớp 9 (217)