Toán 12 – Lũy thừa

TaiLieuViet xin giới thiệu tới các bạn học sinh tài liệu Giải SBT Toán 12 bài 1: Lũy thừa, với nội dung được cập nhật chi tiết và chính xác sẽ là nguồn thông tin hay để giúp các bạn học sính đạt kết quả cao hơn trong học tập.

Giải SBT Toán 12 bài 1

Bài 2.1 trang 95 Sách bài tập (SBT) Giải tích 12

Tính:

a) {2^{2 - 3sqrt 5 }}{.8^{sqrt 5 }}

b) {3^{1 + 2root 3 of 2 }}:{9^{root 3 of 2 }}

c) {{{{10}^{2 + sqrt 7 }}} over {{2^{2 + sqrt 7 }}{{.5}^{1 + sqrt 7 }}}}

d) ({4^{2sqrt 3 }} - {4^{sqrt 3 - 1}}){.2^{ - 2sqrt 3 }}

Hướng dẫn làm bài:

a) 4

b) 3

c) 5

d) {2^{2sqrt 3 }} - {1 over 4}

Bài 2.2 trang 95 Sách bài tập (SBT) Giải tích 12

Tính:

a) {({1 over {16}})^{ - {3 over 4}}} + {810000^{0,25}} - {(7{{19} over {32}})^{{1 over 5}}}

b) {(0,001)^{ - {1 over 3}}} - {2^{ - 2}}{.64^{{2 over 3}}} - {8^{ - 1{1 over 3}}}

c) {27^{{2 over 3}}} - {( - 2)^{ - 2}} + {(3{3 over 8})^{ - {1 over 3}}}

d) {( - 0,5)^{ - 4}} - {625^{0,25}} - {(2{1 over 4})^{ - 1{1 over 2}}}

Hướng dẫn làm bài:

a) 36,5 = {{73} over 2}

b) {(0,001)^{ - {1 over 3}}} - {2^{ - 2}}{.64^{{2 over 3}}} - {8^{ - 1{1 over 3}}}

c) {{113} over {12}}

d) {{289} over {27}}

Bài 2.3 trang 95 Sách bài tập (SBT) Giải tích 12

Cho a và b là các số dương. Đơn giản các biểu thức sau:

a) {{{a^{{4 over 3}}}({a^{ - {1 over 3}}} + {a^{{2 over 3}}})} over {{a^{{1 over 4}}}({a^{{3 over 4}}} + {a^{ - {1 over 4}}})}}

b) {{{a^{{1 over 3}}}sqrt b + {b^{{1 over 3}}}sqrt a } over {root 6 of a + root 6 of b }}

c) (root 3 of a + root 3 of b )({a^{{2 over 3}}} + {b^{{2 over 3}}} - root 3 of {ab} )

d) ({a^{{1 over 3}}} + {b^{{1 over 3}}}):(2 + root 3 of {{a over b}} + root 3 of {{b over a}} )

Hướng dẫn làm bài:

= {{{a^{{1 over 3}}}{b^{{1 over 3}}}({b^{{1 over 2} - {1 over 3}}} + {a^{{1 over 2} - {1 over 3}}})} over {{a^{{1 over 6}}} + {b^{{1 over 6}}}}} = {{{a^{{1 over 3}}}{b^{{1 over 3}}}({b^{{1 over 6}}} + {a^{{1 over 6}}})} over {{a^{{1 over 6}}} + {b^{{1 over 6}}}}} = root 3 of {ab}

c) (root 3 of a + root 3 of b )({a^{{2 over 3}}} + {b^{{2 over 3}}} - root 3 of {ab} )

= ({a^{{1 over 3}}} + {b^{{1 over 3}}})({a^{{2 over 3}}} - {a^{{1 over 3}}}{b^{{1 over 3}}} + {b^{{2 over 3}}})

= {({a^{{1 over 3}}})^3} + {({b^{{1 over 3}}})^3} = a + b

d) ({a^{{1 over 3}}} + {b^{{1 over 3}}}):(2 + root 3 of {{a over b}} + root 3 of {{b over a}} )

= {{{a^{{1 over 3}}} + {b^{{1 over 3}}}} over {{{2root 3 of {ab} + root 3 of {{a^2}} + root 3 of {{b^2}} } over {root 3 of {ab} }}}} = {{(root 3 of a + root 3 of b )root 3 of {ab} } over {{{(root 3 of a + root 3 of b )}^2}}} = {{root 3 of {ab} } over {root 3 of a + root 3 of b }}

Bài 2.4 trang 96 Sách bài tập (SBT) Giải tích 12

Hãy so sánh mỗi số sau với 1.

a) {2^{ - 2}}

b) {(0,013)^{ - 1}}

c) {({2 over 7})^5}

d) {({1 over 2})^{sqrt 3 }}

e) {({pi over 4})^{sqrt 5 - 2}}

g) {({1 over 3})^{sqrt 8 - 3}}

Hướng dẫn làm bài:

a) {2^{ - 2}}

b) {(0,013)^{ - 1}}{({2 over 7})^5}

c) Tương tự,

d) {({1 over 2})^{sqrt 3 }}

e) {({pi over 4})^{sqrt 5 - 2}}

g) {({1 over 3})^{sqrt 8 - 3}}

Bài 2.5 trang 96 Sách bài tập (SBT) Giải tích 12

Hãy so sánh các cặp số sau:

a) sqrt{17}sqrt[3]{28}

b) sqrt[4]{13}sqrt[5]{23}

c) left(frac{1}{3}right)^{sqrt{3}}left(frac{1}{3}right)^{sqrt{2}}

d) 4^{sqrt{5}}4^{sqrt{7}}

Hướng dẫn làm bài:

a) sqrt {17} = root 6 of {{{17}^3}} = root 6 of {4913} ;root 3 of {28} = root 6 of {{{28}^2}} = root 6 of {784}

Vậy sqrt {17}  > root 3 of {28}

b) root 4 of {13} = root {20} of {{{13}^5}} = root {20} of {371293} ;root 5 of {23} = root {20} of {{{23}^4}} = root {20} of {279841}

Ta có 371293 > 279841 nên root 4 of {13}  > root 5 of {23}

c) sqrt 3 > sqrt 2{1 over 3} < 1 nên {({1 over 3})^{sqrt 3 }} < {({1 over 3})^{sqrt 2 }}

d) sqrt 5 < sqrt 74 > 1 nên {4^{sqrt 5 }} < {4^{sqrt 7 }}

———————————

Trên đây TaiLieuViet.com đã giới thiệu tới bạn đọc tài liệu: Giải SBT Toán 12 bài 1: Lũy thừa. Để có kết quả cao hơn trong học tập, TaiLieuViet xin giới thiệu tới các bạn học sinh tài liệu Giải bài tập Toán lớp 12, Giải bài tập Hóa học lớp 12, Giải bài tập Vật Lí 12 mà TaiLieuViet tổng hợp và đăng tải.