TaiLieuViet giới thiệu tới các bạn Đề thi học kì 2 Toán 7 sách Chân trời sáng tạo năm học 2022 – 2023 – Đề 1. Đề thi Toán 7 học kì 2 bao gồm cả trắc nghiệm và tự luận cho các em tham khảo và luyện tập. Đây không chỉ là tài liệu hay cho các em ôn luyện trước kỳ thi mà còn là tài liệu cho thầy cô tham khảo ra đề.

Đề thi học kì 2 Toán 7 Chân trời sáng tạo

I. TRẮC NGHIỆM ( 2 điểm)

Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

Câu 1. Hai đại lượng x,y trong công thức nào tỉ lệ nghịch với nhau:

A. y = 5 + x

B. x = dfrac{5}{y}

C. y = 5x

D. x = 5y

Câu 2. Trong các sự kiện, hiện tượng sau, đâu là biến cố chắc chắn?

A. Mặt Trời quay quanh Trái Đất B. Khi gieo đồng xu thì được mặt ngửa

C. Có 9 cơn bão đổ bộ vào nước ta trong năm tới D. Ngày mai, Mặt Trời mọc ở phía Đông

Câu 3. Giá trị của biểu thức: {x^3} - 2{x^2} tại x = – 2 là:

A. – 16

B. 16

C. 0

D. – 8

Câu 4. Biểu thức nào sau đây không là đơn thức?

A. 4{x^2}yleft( { - 2x} right)

B. 2x

C. 2xy - {x^2}

D. 2021

Câu 5. Sắp xếp các hạng tử của đa thức Pleft( x right) = 2{x^3} - 7{x^2} + {x^4} - 4 theo lũy thừa giảm dần của biến ta được:

A. Pleft( x right) = {x^4} + 2{x^3} - 7{x^2} - 4 B. Pleft( x right) = 7{x^2} + 2{x^3} + {x^4} - 4

C.Pleft( x right) =  - 4 - 7{x^2} + 2{x^3} + {x^4} D. Pleft( x right) = {x^4} - 2{x^3} - 7{x^2} - 4

Câu 6. Cho tam giác MNP có NP = 1cm,MP = 7cm. Độ dài cạnh MN là một số nguyên (cm). Độ dài cạnh MN là:

A. 8cm

B. 5cm

C. 6cm

D. 7cm

Câu 7. Cho tam giác ABC có AB = AC. Trên các cạnh AB và AC lấy các điểm D,E sao cho AD = AE. Gọi K là giao điểm của BE và CD. Chọn câu sai.

A. BE = CD

Câu 8. Giao điểm của 3 đường trung trực của tam giác

A. cách đều 3 cạnh của tam giác.

B. được gọi là trực tâm của tam giác.

C. cách đều 3 đỉnh của tam giác.

D. cách đỉnh một đoạn bằng dfrac{2}{3} độ dài đường trung tuyến đi qua đỉnh đó.

II. PHẦN TỰ LUẬN (8,0 điểm)

Bài 1. (1 điểm) Tìm x biết:

a) dfrac{{5x - 2}}{3} = dfrac{{ - 3}}{4}

b) left( {{x^2} - dfrac{1}{4}} right).left( {x + dfrac{2}{5}} right) = 0

Bài 2. (1 điểm) Ba lớp 7A, 7B, 7C cùng tham gia lao động trồng cây. Biết số cây ở lớp 7A, 7B, 7C được trồng tỉ lệ với các số 3;5;8 và hai lần số cây của lớp 7A cộng với 4 lần số cây lớp 7B trồng được nhiều hơn số cây lớp 7C trồng được là 108 cây. Tính số cây trồng được của mỗi lớp

Bài 3. (2,0 điểm) Cho hai đa thức A(x) = x – 2x2 + 3x5 + x4 + x + x2;

B(x) = –2x2 + x – 2 – x4 + 3x2 – 3x5.

a) Thu gọn và sắp xếp hai đa thức trên theo lũy thừa giảm dần của biến.

b) Tìm đa thức M(x) sao cho B(x) = A(x) + M(x). Tìm bậc và hệ số cao nhất của đa thức M(x).

c) Tìm nghiệm của đa thức N(x) biết A(x) = N(x) – B(x).

Bài 4. (1,0 điểm)Một chiếc hộp kín có chứa 5 quả bóng có kích thước và khối lượng như nhau, và được ghi lần lượt các số 5; 10; 15; 20; 25. Lấy ra ngẫu nhiên 1 quả bóng từ hộp. Xét các biến cố sau:

A: “Quả bóng lấy ra ghi số nguyên tố”;

B: “Quả bóng lấy ra ghi số chia hết cho 5”;

C: “Quả bóng lấy ra ghi số chia hết cho 6”.

D: “Quả bóng lấy ra ghi số tròn chục”.

a) Trong các biến cố trên, chỉ ra biến cố nào là chắc chắn, không thể.

b) Tính xác suất của các biến cố A và D.

Bài 5. (2,5 điểm) Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm D sao cho BD = BA. Đường thẳng vuông góc với BC tại D cắt cạnh AC tại M, cắt tia BA tại N.

a) So sánh các góc của tam giác ABC.

b) Chứng minh DABM = DDBM. Từ đó suy ra MA = MD.

c) Tam giác MNC là tam giác gì? Tại sao?

d) Gọi I là trung điểm của CN. Chứng minh ba điểm B, M, I thẳng hàng.

Bài 6. (0,5 điểm) Cho x;{kern 1pt} y;{kern 1pt} z tỉ lệ thuận với 3;{kern 1pt} ,4;,{kern 1pt} 5. Tính giá trị của biểu thức

A = 2024left( {x - y} right)left( {y - z} right) - 506.{left( {dfrac{{x + y + z}}{6}} right)^2}

Đáp án Đề kiểm tra học kì 2 Toán 7 Chân trời sáng tạo

I. Trắc nghiệm

1. B

2. D

3. A

4. C

5. A

6. D

7. D

8. C

II. PHẦN TỰ LUẬN (8,0 điểm)

Bài 1.

a) dfrac{{5x - 2}}{3} = dfrac{{ - 3}}{4}

begin{array}{l}4.left( {5x - 2} right) = left( { - 3} right).3\20x - 8 =  - 9\20x =  - 9 + 8\20x =  - 1\x = dfrac{{ - 1}}{{20}}end{array}

Vậy x = dfrac{{ - 1}}{{20}}

b)left( {{x^2} - dfrac{1}{4}} right).left( {x + dfrac{2}{5}} right) = 0

Trường hợp 1:

begin{array}{l}{x^2} - dfrac{1}{4} = 0\{x^2} = dfrac{1}{4} = {left( { pm dfrac{1}{2}} right)^2}\ Rightarrow x = dfrac{1}{2};x =  - dfrac{1}{2}end{array}

Trường hợp 2:

begin{array}{l}x + dfrac{2}{5} = 0\x = dfrac{{ - 2}}{5}end{array}

Vậy x = dfrac{1}{2};x =  - dfrac{1}{2};x = dfrac{{ - 2}}{5}

Câu 2

Gọi số cây ba lớp 7A, 7B, 7C trồng được lần lượt là x,y,z (cây) (điều kiện: x,y,z in {mathbb{N}^*})

Vì số cây ở lớp 7A, 7B, 7C được trồng tỉ lệ với các số 3;5;8 nên ta có: dfrac{x}{3} = dfrac{y}{5} = dfrac{z}{8}

Vì hai lần số cây của lớp 7A cộng với 4 lần số cây lớp 7B trồng được nhiều hơn số cây lớp 7C trồng được là 108 cây nên ta có: 2x + 4y – z = 108

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: dfrac{x}{3} = dfrac{y}{5} = dfrac{z}{8}

Khi đó, dfrac{x}{3} = 6 Rightarrow x = 18 (tmđk)

dfrac{y}{5} = 6 Rightarrow y = 30 (tmđk)

dfrac{z}{8} = 6 Rightarrow y = 48 (tmđk)

Vậy số cây ba lớp trồng được là: Lớp 7A: 18 cây; lớp 7B: 30 cây, lớp 7C: 48 cây.

Bài 3. (2,0 điểm)

a) A(x) = x – 2x2 + 3x5 + x4 + x + x2

= 3x5 + x4 – x2 + 2x.

B(x) = –2x2 + x – 2 – x4 + 3x2 – 3x5

= – 3x5 – x4 + x2 + x – 2

b) B(x) = A(x) + M(x)

Suy ra M(x) = B(x) – A(x)

M(x) = (– 3x5 – x4 + x2 + x – 2) – (3x5 + x4 – x2 + 2x)

= – 3x5 – x4 + x2 + x – 2 – 3x5 – x4 + x2 – 2x

= –6x5 – 2x4 + 2x2 – x – 2.

Đa thức M(x) có bậc là 5, hệ số cao nhất là –6.

c) A(x) = N(x) – B(x)

Suy ra N(x) = A(x) + B(x)

N(x) = (3x5 + x4 – x2 + 2x) + (– 3x5 – x4 + x2 + x – 2)

= 3x5 + x4 – x2 + 2x – 3x5 – x4 + x2 + x – 2

= – x – 2.

N(x) = 0

Suy ra – x – 2 nên x = – 2.

Vậy đa thức N(x) có nghiệm là x = – 2.

Bài 4. (1,0 điểm)

a) Biến cố B là biến cố chắc chắn, biến cố C là biến cố không thể.

b) Vì 5 quả bóng có kích thước và khối lượng như nhau nên mỗi quả bóng đều có cùng khả năng được chọn.

• Trong 5 quả bóng ghi lần lượt các số 5; 10; 15; 20; 25, chỉ có 1 quả bóng ghi số nguyên tố là 5. Do đó xác xuất của biến cố A là PA=1/5 .

• Trong 5 quả bóng ghi lần lượt các số 5; 10; 15; 20; 25, có 2 quả bóng ghi số tròn chục là 10; 20. Do đó xác xuất của biến cố D là PA=2/5.

Bài 5. (2,5 điểm)

Đề thi học kì 2 Toán 7 Chân trời sáng tạo - Đề 1

a) Tam giác ABC là tam giác vuông tại A nên cạnh huyền BC là cạnh lớn nhất.

Mà AB < AC nên AB < AC < BC. widehat {A}widehat {B}widehat {C}

Suy ra widehat {C}<widehat {B}<widehat {A} (quan hệ giữa góc và cạnh đối diện trong tam giác).

b) Xét ∆ABM và ∆DBM có:

BAM^=BDM^=90°;

BA = BD (giả thiết);

BM là cạnh chung

Do đó ∆ABM = ∆DBM (cạnh huyền – cạnh góc vuông)

Suy ra MA = MD (hai cạnh tương ứng).

c) Xét ∆ANM và ∆DCM có:

NAM^=CDM^=90°;

MA = MD (chứng minh câu b);

AMN^=DMC^ (hai góc đối đỉnh).

Do đó ∆ANM = ∆DCM (cạnh góc vuông – góc nhọn kề)

Suy ra MN = MC (hai cạnh tương ứng).

Tam giác MNC có MN = MC nên là tam giác cân tại M.

d) Do ∆MNC cân tại M có I là trung điểm của NC nên MI là đường trung tuyến của ∆MNC.

Khi đó MI đồng thời là đường cao của ∆MNC hay MI ⊥ NC (1)

Xét ∆BNC có hai đường cao CA, ND cắt nhau tại M nên M là trực tâm của DBNC.

Suy ra BM ⊥ NC (2)

Từ (1) và (2) suy ra ba điểm B, M, I thẳng hàng.

Bài 5.

x;,{kern 1pt} y;{kern 1pt} ,z tỉ lệ thuận với 3;{kern 1pt} ,,4;,,{kern 1pt} 5 Rightarrow dfrac{x}{3} = dfrac{y}{4} = dfrac{z}{5}. Đặt dfrac{x}{3} = dfrac{y}{4} = dfrac{z}{5} = k Rightarrow left{ {begin{array}{*{20}{l}}{x = 3k}\{y = 4k}\{z = 5k}end{array}} right..

Khi đó, A = 2024left( {3k - 4k} right)left( {4k - 5k} right) - 506.{left( {dfrac{{3k + 4k + 5k}}{6}} right)^2}

A = 2024left( { - k} right)left( { - k} right) - 506.{left( {2k} right)^2}

A = 2024.{k^2} - 506.4.{k^2}

A = 2024{k^2} - 2024{k^2}

A = 0

Vậy A = 0.

Ma trận Đề thi học kì 2 Toán 7 Chân trời sáng tạo

STT

Chương

Nội dung kiến thức

Mức độ kiến thức, kĩ năng cần kiểm tra, đánh giá

Tổng % điểm

Nhận biết

Thông hiểu

Vận dụng

Vận dụng cao

TN

TL

TN

TL

TN

TL

TN

TL

1

Các đại lượng tỉ lệ

Tỉ lệ thức

1

(0,25đ)

1

(0,5đ)

20%

Tính chất dãy tỉ số bằng nhau và đại lượng tỉ lệ

1

(0,25đ)

1

(1,0đ)

2

Biểu thức đại số

Biểu thức đại số

1

(0,25đ)

1

(0,25đ)

35%

Đa thức một biến

1

(0,5đ)

1

(0,5đ)

2

(1,5đ)

1

(0,5đ)

3

Tam giác

Tam giác. Tam giác bằng nhau. Tam giác cân. Quan hệ giữa đường vuông góc và đường xiên

2

(0,5đ)

2

(2,0đ)

32,5%

Các đường đồng quy của tam giác

1

(0,25đ)

1

(0,5đ)

4

Một số yếu tố xác suất

Biến cố

1

(0,5đ)

12,5%

Xác suất của biến cố

1

(0,25đ)

1

(0,5đ)

Tổng: Số câu

Điểm

6

(1,5đ)

2

(1,0đ)

2

(0,5đ)

4

(3,5đ)

4

(3,0đ)

1

(0,5đ)

22

(10đ)

Tỉ lệ

25%

40%

30%

5%

100%

Tỉ lệ chung

65%

35%

100%

Lưu ý:

– Các câu hỏi trắc nghiệm khách quan là các câu hỏi ở mức độ nhận biết và thông hiểu, mỗi câu hỏi có 4 lựa chọn, trong đó có duy nhất 1 lựa chọn đúng.

– Các câu hỏi tự luận là các câu hỏi ở mức độ nhận biết, thông hiểu, vận dụng và vận dụng cao.

– Số điểm tính cho 1 câu trắc nghiệm là 0,25 điểm/câu; số điểm của câu tự luận được quy định trong hướng dẫn chấm nhưng phải tương ứng với tỉ lệ điểm được quy định trong ma trận.

Bản đặc tả Đề thi học kì 2 Toán 7 Chân trời sáng tạo

STT

Chương

Nội dung kiến thức

Mức độ kiến thức, kĩ năng cần kiểm tra, đánh giá

Số câu hỏi theo mức độ

Nhận biết

Thông hiểu

Vận dụng

Vận dụng cao

1

Các đại lượng tỉ lệ

Tỉ lệ thức

Nhận biết:

– Nhận biết được tỉ lệ thức và các tính chất của tỉ lệ thức.

Thông hiểu:

– Tìm đại lượng chưa biết trong một tỉ lệ thức.

Vận dụng:

– Vận dụng được tính chất của tỉ lệ thức trong giải toán.

1TN

1TL

Tính chất dãy tỉ số bằng nhau và đại lượng tỉ lệ

Nhận biết :

– Nhận biết được dãy tỉ số bằng nhau.

– Nhận biết đại lượng tỉ lệ thuận, đại lượng tỉ lệ nghịch.

– Chỉ ra hệ số tỉ lệ khi biết công thức.

Thông hiểu:

– Giải một số bài toán đơn giản về đại lượng tỉ lệ thuận, đại lượng tỉ lệ nghịch.

Vận dụng:

– Vận dụng được tính chất của dãy tỉ số bằng nhau trong giải toán (ví dụ: chia một số thành các phần tỉ lệ với các số cho trước,…).

– Giải được một số bài toán về đại lượng tỉ lệ thuận (ví dụ: bài toán về tổng sản phẩm thu được và năng suất lao động,…).

– Giải được một số bài toán về đại lượng tỉ lệ nghịch (ví dụ: bài toán về thời gian hoàn thành kế hoạch và năng suất lao động,…).

1TN

1TL

2

Biểu thức đại số

Biểu thức đại số

Nhận biết:

– Nhận biết được biểu thức số.

– Nhận biết được biểu thức đại số.

– Xác định biến số (biến) trong một biểu thức đại số.

Thông hiểu:

– Tính được giá trị của một biểu thức đại số.

– Viết một biểu thức đại số biểu thị một mệnh đề.

1TN

1TN

Đa thức một biến

Nhận biết:

– Nhận biết đơn thức một biến và bậc của đơn thức.

– Nhận biết đa thức một biến và các hạng tử của nó.

– Nhận biết bậc, hệ số cao nhất, hệ số tự do của đa thức một biến.

– Nhận biết được nghiệm của đa thức một biến.

Thông hiểu:

– Tính được giá trị của đa thức khi biết giá trị của biến.

– Thu gọn và sắp xếp các hạng tử của một đa thức.

Vận dụng:

– Thực hiện được các phép tính: phép cộng, phép trừ phép nhân, phép chia trong tập hợp các đa thức một biến; vận dụng được những tính chất của các phép tính đó trong tính toán.

– Tìm nghiệm của đa thức một biến.

Vận dụng cao:

– Xác định được hệ số của đa thức một biến để đa thức thỏa mãn yêu cầu.

– Vận dụng tính chất của phép chia đa thức một biến để giải toán.

1TL

1TL

2TL

1TL

3

Tam giác

Tam giác. Tam giác bằng nhau. Tam giác cân. Quan hệ giữa đường vuông góc và đường xiên

Nhận biết:

– Nhận biết liên hệ về độ dài của ba cạnh trong một tam giác.

– Nhận biết tam giác cân.

– Nhận biết được khái niệm hai tam giác bằng nhau.

– Nhận biết quan hệ giữa góc và cạnh đối diện trong một tam giác.

– Nhận biết đường vuông góc và đường xiên; khoảng cách từ một điểm đến một đường thẳng.

Thông hiểu:

– Giải thích được định lí về tổng các góc trong một tam giác bằng 180°.

– Tính số đo của một góc dựa vào định lí tổng ba góc của một tam giác.

– Giải thích được các trường hợp bằng nhau của hai tam giác, của hai tam giác vuông.

– Mô tả được tam giác cân và giải thích được tính chất của tam giác cân.

– Giải thích được quan hệ giữa đường vuông góc và đường xiên dựa trên mối quan hệ giữa cạnh và góc đối trong tam giác (đối diện với góc lớn hơn là cạnh lớn hơn và ngược lại).

– Nhận biết đường trung trực của một đoạn thẳng và tính chất cơ bản của đường trung trực.

Vận dụng:

– Diễn đạt được lập luận và chứng minh hình học trong những trường hợp đơn giản (ví dụ: lập luận và chứng minh được các đoạn thẳng bằng nhau, các góc bằng nhau từ các điều kiện ban đầu liên quan đến tam giác,…).

2TN

2TL

Các đường đồng quy của tam giác

Nhận biết:

– Nhận biết các đường đặc biệt trong tam giác (đường trung tuyến, đường cao, đường phân giác, đường trung trực); sự đồng quy của các đường đặc biệt đó.

Thông hiểu:

– Giải thích, mô tả tính chất của các đường đặc biệt và sự đồng quy của các đường đặc biệt đó trong tam giác (đường trung tuyến, đường cao, đường phân giác, đường trung trực).

Vận dụng:

– Giải quyết được một số vấn đề thực tiễn (đơn giản, quen thuộc) liên quan đến ứng dụng của hình học như: đo, vẽ, tạo dựng các hình đã học.

Vận dụng cao:

– Giải quyết được một số vấn đề thực tiễn (phức hợp, không quen thuộc) liên quan đến ứng dụng của hình học như: đo, vẽ, tạo dựng các hình đã học.

1TN

1TL

4

Một số yếu tố xác suất

Biến cố

Nhận biết:

– Nhận biết biến cố chắc chắn, biến cố không thể, biến cố ngẫu nhiên.

1TL

Xác suất của biến cố

Nhận biết:

– Nhận biết được xác suất của một biến cố ngẫu nhiên.

Thông hiểu:

– Tính toán được xác suất của một biến cố ngẫu nhiên trong một số ví dụ đơn giản (ví dụ: lấy bóng trong túi, tung xúc xắc,…).

1TN

1TL

…………………………….

Trên đây là Đề thi học kì 2 Toán 7 Chân trời sáng tạo năm học 2022 – 2023 – Đề 1. Để chuẩn bị cho kì thi học kì 2 lớp 7 sắp tới, TaiLieuViet giới thiệu tới các bạn chuyên mục Đề thi giữa kì 2 lớp 7 với đầy đủ các môn, do đội ngũ giáo viên TaiLieuViet biên soạn hoặc sưu tầm từ nhiều trường THCS trên cả nước. Đây là tài liệu hay cho thầy cô tham khảo ra đề, cũng là nguồn tài liệu để các em học sinh ôn luyện trước kì thi. Mời thầy cô và các em tham khảo.