1. Công thức Lượng giác cơ bản

tan x = frac{sinx}{cosx} cotx = frac{cosx}{sinx}

sin2x + cos2x = 1

tan x . cot x = 1

1 + tan2 x = frac{1}{cos^{2}x}

1 + cot2 x = frac{1}{sin ^{2}x}

2. Công thức cộng

cos(a + b) = cos a.cos b – sin a.sin b cos(a – b) = cos a.cos b + sin a.sin b
sin(a + b) = sin a.cos b + sin b.cos a sin(a – b) = sin a.cos b – sin b.cos a
tan(a + b) = frac{{tan a + tan b}}{{1 - tan a.tan b}} tan(a – b) = frac{{tan a - tan b}}{{1 + tan a.tan b}}

3. Công thức các cung liên kết trên đường tròn lượng giác

Góc đối nhau ( cos đối)

Góc bù nhau (sin bù)

Góc phụ nhau (Phụ chéo)

Góc hơn kém (Khác pi tan)

cos (-α) = cos α sin (π – α) = sin α sin (π/2 – α)= cos α sin (π + α) = – sin α
sin (-α) = -sin α cos (π – α) = – cos α cos (π/2 – α) = sinα cos (π + α) = – cosα
tan (-α) = – tan α tan ( π – α) = – tan α tan (π/2 – α) = cot α tan (π + α) = tanα
cot (-α) = -cot α cot (π – α) = – cot α cot (π/2 – α) = tan α cot (π + α) = cotα

Cung hơn kém π / 2

  • cos(π/2 + x) = – sinx
  • sin(π/2 + x) = cosx

4. Công thức nhân

a. Công thức nhân đôi

  • sin2a = 2sina.cosa
  • cos2a = cos2a – sin2a = 2cos2a – 1 = 1 – 2sin2a
  • tan2a = frac{{2tan a}}{{1 - {{tan }^2}a}}

Thơ:

b. Công thức nhân ba

  • sin3a = 3sina – 4sin3a
  • cos3a = 4cos3a – 3cosa
  • tan3a = frac{{3tan a - {{tan }^3}a}}{{1 - 3{{tan }^2}a}}

Thơ:

5. Công thức hạ bậc

{sin ^2}a = frac{{1 - cos 2a}}{2} {cos ^2}a = frac{{1 + cos 2a}}{2}
{sin ^3}a = frac{{3sin a - sin 3a}}{4} {cos ^3}a = frac{{3cos a + cos 3a}}{4}

6. Biến đổi tổng thành tích

cos a + cos b = 2cos frac{{a + b}}{2}.cos frac{{a - b}}{2} cos a - cos b =  - 2sin frac{{a + b}}{2}.sin frac{{a - b}}{2}
sin a + sin b = 2sin frac{{a + b}}{2}.cos frac{{a - b}}{2} sin a - sin b = 2cos frac{{a + b}}{2}.sin frac{{a - b}}{2}

Thơ nhớ:

7. Biến đổi tích thành tổng

  • cos a.cos b = frac{1}{2}left[ {cos left( {a + b} right) + cos left( {a - b} right)} right]
  • sin a.sin b = -frac{1}{2}left[ {cos left( {a + b} right) - cos left( {a - b} right)} right]
  • sin a.cos b =  - frac{1}{2}left[ {sin left( {a + b} right) + sin left( {a - b} right)} right]

Thơ:

8. Nghiệm phương trình lượng giác

Kiến thức cơ bản

Trường hợp đặc biệt

sin a = sin b Leftrightarrow left[ {begin{array}{*{20}{c}}
  {a = b + k2pi } \ 
  {a = pi  - b + k2pi } 
end{array}} right.left( {k in mathbb{Z}} right)

cos a = cos b Leftrightarrow left[ {begin{array}{*{20}{c}}
  {a = b + k2pi } \ 
  {a =  - b + k2pi } 
end{array}} right.left( {k in mathbb{Z}} right)

tan a = tan b Leftrightarrow a = b + kpi ;left( {k in mathbb{Z}} right)

cot a = cot b Leftrightarrow a = b + kpi ;left( {k in mathbb{Z}} right)

sin a = 0 Leftrightarrow a = kpi ;left( {k in mathbb{Z}} right)

sin a = 1 Leftrightarrow a = frac{pi }{2} + k2pi ;left( {k in mathbb{Z}} right)

sin a =  - 1 Leftrightarrow a =  - frac{pi }{2} + k2pi ;left( {k in mathbb{Z}} right)

cos a = 0 Leftrightarrow a = frac{pi }{2} + kpi ;left( {k in mathbb{Z}} right)

cos a = 1 Leftrightarrow a = k2pi ;left( {k in mathbb{Z}} right)

cos a =  - 1 Leftrightarrow a = pi  + k2pi ;left( {k in mathbb{Z}} right)

9. Dấu của các giá trị lượng giác

Góc phần tư số I II III IV
Giá trị lượng giác
sin x + +
cos x + +
tan x + +
cot x + +

10. Bảng giá trị lượng giác một số góc đặc biệt

alpha

Bảng công thức lượng giác dùng cho lớp 10 - 11 - 12

left( {{0}^{0}} right)

frac{pi }{6}

left( {{30}^{0}} right)

frac{pi }{4}

left( {{45}^{0}} right)

frac{pi }{3}

left( {{60}^{0}} right)

frac{pi }{2}

left( {{90}^{0}} right)

frac{2pi }{3}

left( {{120}^{0}} right)

frac{3pi }{4}

left( {{135}^{0}} right)

frac{5pi }{6}

left( {{150}^{0}} right)

pi

left( {{180}^{0}} right)

frac{3pi }{2}

left( {{270}^{0}} right)

2pi

left( {{360}^{0}} right)

sin alpha 0 frac{1}{2} frac{sqrt{2}}{2} frac{sqrt{3}}{2} 1 frac{sqrt{3}}{2} frac{sqrt{2}}{2} frac{1}{2} 0 -1 0
cos alpha 1 frac{sqrt{3}}{2} frac{sqrt{2}}{2} frac{1}{2} 0 -frac{1}{2} -frac{sqrt{2}}{2} -frac{sqrt{3}}{2} -1 0 1
tan alpha 0 frac{1}{sqrt{3}} 1 sqrt{3} || -sqrt{3} -1 -frac{1}{sqrt{3}} 0 || 0
cot alpha || sqrt{3} 1 frac{1}{sqrt{3}} 0 -frac{1}{sqrt{3}} -1 -sqrt{3} || 0 ||

11. Công thức lượng giác bổ sung

  • sin a + cos b = sqrt 2 sin left( {alpha  + frac{pi }{4}} right) = sqrt 2 cos left( {alpha  - frac{pi }{4}} right)
  • sin a - cos b = sqrt 2 sin left( {alpha  - frac{pi }{4}} right) =  - sqrt 2 cos left( {alpha  + frac{pi }{4}} right)
  • tan a + cot a = frac{2}{{sin 2a}}
  • cot a – tan a = 2cot 2a
  • sin4a + cos4a = 1 – frac{1}{2}sin2 2a = frac{1}{4}cos4a + frac{3}{4}
  • sin6a + cos6a = 1 – frac{3}{4}sin2 2a = frac{3}{8}cos4a + frac{5}{8}

Biểu diễn công thức theo t = tan frac{alpha }{2}

  • sin alpha
  • cos alpha
  • tan alpha
  • cot alpha

12. Cách học thuộc Bảng công thức lượng giác bằng thơ, “thần chú”

Cách học thuộc các công thức lượng giác bằng thơ

Công thức CỘNG trong lượng giác

HÀM SỐ LƯỢNG GIÁC

GIÁ TRỊ LƯỢNG GIÁC CỦA CÁC CUNG ĐẶC BIỆT

CÔNG THỨC LƯỢNG GIÁC NHÂN BA

CÔNG THỨC LƯỢNG GIÁC BIẾN ĐỔI TÍCH THÀNH TỔNG

CÔNG THỨC LƯỢNG GIÁC BIẾN ĐỔI TỔNG THÀNH TÍCH

CÔNG THỨC CHIA ĐÔI (tính theo t = tg(a/2))

HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG

• Công thức cộng:

Cos(x ± y)= cosx. cosy mp sinx . siny

Sin(x ± y)= sinxcosy ± cosxsiny

* Thần chú: Cos thì cos cos sin sin

Sin thì sin cos cos sin rõ ràng

Cos thì đổi dấu hỡi nàng

Sin thì giữ dấu xin chàng nhớ cho!

* Thần chú: Tan một tổng hai tầng cao rộng

Trên thượng tầng tan cộng cùng tan

Hạ tầng số 1 ngang tàng

Dám trừ đi cả tan tan oai hùng

Hoặc: Tan tổng thì lấy tổng tan

Chia một trừ với tích tan, dễ òm.

• Công thức biến đổi tổng thành tích:

Ví dụ: cosx + cosy= 2cos cos

(Tương tự những công thức như vậy)

* Thần chú: cos cộng cos bằng 2 cos cos

Cos trừ cos bằng trừ 2 sin sin

Sin cộng sin bằng 2 sin sin

Sin trừ sin bằng 2 cos sin.

* Tan ta cộng với tan mình bằng sin hai đứa trên cos mình cos ta.

Công thức biến đổi tích thành tổng:

Ví dụ: cosx.cosy=1/2[cos(x+y)+cos(x-y)] (Tương tự những công thức như vậy)

* Thần chú: Cos cos nửa cos(+) cộng cos(-)

Sin sin nửa cos(-) trừ cos(+)

Sin cos nửa sin(+) cộng sin(-)

• Công thức nhân đôi:

Ví dụ: sin2x= 2sinxcosx (Tương tự những công thức như vậy)

Thần chú: Sin gấp đôi bằng 2 sin cos

Cos gấp đôi bằng bình cos trừ bình sin

= trừ 1 cộng hai bình cos

= cộng 1 trừ hai bình sin

Chỉ việc nhớ công thức nhân đôi của cos bằng thần chú trên rồi từ đó có thể suy ra công thức hạ bậc.

Tan gấp đôi = Tan đôi ta lấy đôi tan (2 tan)

Chia 1 trừ lại bình tan, ra liền.

• Hàm số lượng giác và các cung có liên quan đặc biệt:

Ví dụ: Cos(-x) = cosx

Tan( + x) = tan x

* Thần chú: Sin bù, Cos đối, Tan Pi,

Phụ nhau Sin Cos, ắt thì phân chia

Hoặc: Cos đối, sin bù, phụ chéo, hơn kém pi tan.

Diện tích

——————————————–

  • Bài tập Toán 11: Một số phương trình lượng giác thường gặp
  • Bảng công thức Tích phân – Đạo hàm – Mũ – Logarit
  • Tổng hợp công thức Vật lý lớp 12
  • Các công thức lượng giác cần ghi nhớ
  • Bài tập trắc nghiệm phương trình lượng giác

Trên đây TaiLieuViet đã giới thiệu tới bạn đọc Bảng công thức lượng giác dùng cho lớp 10 – 11 – 12. Mong rằng qua bài viết bạn đọc có thể học tập tốt hơn môn Toán nhé. Để có kết quả cao hơn trong học tập, TaiLieuViet xin giới thiệu tới các bạn học sinh tài liệu Soạn bài lớp 12, Giải bài tập Toán lớp 12, Giải bài tập Hóa học lớp 12, Giải bài tập Vật Lí 12, Tài liệu học tập lớp 12 mà TaiLieuViet tổng hợp và đăng tải.