Bài tập cuối chương 5 CTST được TaiLieuViet.vn tổng hợp và xin gửi tới bạn đọc. Bài viết sẽ hướng dẫn bạn đọc trả lời các câu hỏi trong SGK Toán 10 CTST. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé.

Bài 1 trang 102 SGK Toán 10 CTST

Cho 3 vectơ overrightarrow a ,overrightarrow b ,overrightarrow cđều khác vectơ overrightarrow 0 . Các khẳng định sau đúng hay sai?

a) Nếu hai vectơ overrightarrow a ,overrightarrow bcùng phương với overrightarrow c thì overrightarrow aoverrightarrow bcùng phương

b) Nếu hai vectơ overrightarrow a ,overrightarrow bcùng ngược hướng với overrightarrow cthì overrightarrow aoverrightarrow bcùng hướng

Gợi ý đáp án

a)

+) Vectơoverrightarrow a cùng phương với vectơ overrightarrow cnên giá của vectơ overrightarrow asong song với giá của vectơ overrightarrow{c}

+) Vectơ overrightarrow bcùng phương với vectơ overrightarrow c nên giá của vectơ overrightarrow bsong song với giá của vectơ overrightarrow c

Suy ra giá của vectơ overrightarrow avà vectơ overrightarrow bsong song với nhau nên overrightarrow aoverrightarrow bcùng phương

Vậy khẳng định trên đúng

b) Giả sử vectơ overrightarrow ccó hướng từ A sang B

+) Vectơ overrightarrow angược hướng với vectơ overrightarrow cnên giá của vectơ overrightarrow asong song với giá của vectơ overrightarrow cvà có hướng từ B sang A

+) Vectơ overrightarrow bngược hướng với vectơ overrightarrow c nên giá của vectơ overrightarrow b song song với giá của vectơ overrightarrow c và có hướng từ B sang A

Suy ra, hai vectơ overrightarrow aoverrightarrow b cùng hướng

Vậy khẳng định trên đúng

Bài 2 trang 102 SGK Toán 10 CTST

Cho hình chữ nhật ABCDO là giao điểm của hai đường chéo và AB = a, BC = 3a.

a) Tính độ dài các vectơ overrightarrow {AC} ,overrightarrow {BD}

b) Tìm trong hình ảnh vectơ đối nhau và có độ dài bằngfrac{{asqrt {10} }}{2}

Gợi ý đáp án

Bài tập cuối chương 5 CTST

a) Ta có:

AC = BD = sqrt {A{B^2} + B{C^2}} = sqrt {{a^2} + {{left( {3a} right)}^2}} = asqrt {10}

+) left| {overrightarrow {AC} } right| = AC = asqrt {10}

+) left| {overrightarrow {BD} } right| = BD = asqrt {10}

b) O là giao điểm của hai đường chéo nên ta có:

AO = OC = BO = OD = frac{{asqrt {10} }}{2}

Dựa vào hình vẽ ta thấy AO CO cùng nằm trên một đường thẳng; BO DO cùng nằm trên một đường thẳng

Suy ra các cặp vectơ đối nhau và có độ dài bằng frac{{asqrt {10} }}{2} là:

overrightarrow {OA} và overrightarrow {OC} ; overrightarrow {AO} và overrightarrow {CO} ; overrightarrow {OB} và overrightarrow {OD} ; overrightarrow {BO} và overrightarrow {DO}

Bài 3 trang 102 SGK Toán 10 CTST

+) ABCD là hình thoi nên cũng là hình bình hành

Áp dụng quy tắc hình bình hành ta có:

overrightarrow p = overrightarrow {AB} + overrightarrow {AD} = overrightarrow {AC}

+) overrightarrow u = overrightarrow {AB} - overrightarrow {AD} = overrightarrow {DB}

+) overrightarrow v = 2overrightarrow {AB} - overrightarrow {AC} = overrightarrow {AB} + left( {overrightarrow {AB} - overrightarrow {AC} } right) = overrightarrow {AB} + overrightarrow {CB} = overrightarrow {AB} + overrightarrow {DA} = overrightarrow {DB}

Bài tập cuối chương 5 CTST

Bài 4 trang 102 SGK Toán 10 CTST

Cho hình bình hành ABCD hai điểm MN lần lượt là trung điểm của BC AD. Vẽ điểm E sao cho overrightarrow {CE} = overrightarrow {AN} (hình 1)

a) Tìm tổng của các vectơ:

overrightarrow {NC} và overrightarrow {MC} ; overrightarrow {AM} và overrightarrow {CD} ; overrightarrow {AD} và overrightarrow {NC}

b) Tìm các vectơ hiệu:

overrightarrow {NC} - overrightarrow {MC} ; overrightarrow {AC} - overrightarrow {BC} ; overrightarrow {AB} - overrightarrow {ME} .

c) Chứng minh overrightarrow {AM} + overrightarrow {AN} = overrightarrow {AB} + overrightarrow {AD}

Gợi ý đáp án

a) Ta có:overrightarrow {CE} = overrightarrow {AN}

Suy ra overrightarrow {MC} = overrightarrow {CE}

+) overrightarrow {NC} + overrightarrow {MC} = overrightarrow {NC} + overrightarrow {CE} = overrightarrow {NE}

+) ABCD là hình bình hành nên overrightarrow {CD} = overrightarrow {BA}

overrightarrow {AM} + overrightarrow {CD} = overrightarrow {AM} + overrightarrow {BA} = overrightarrow {BM}

+) Ta có overrightarrow {MC} = overrightarrow {AN} Rightarrow AMCN là hình bình hành nên overrightarrow {NC} = overrightarrow {AM}

overrightarrow {AD} + overrightarrow {NC} = overrightarrow {AD} + overrightarrow {AM} = overrightarrow {AE} (vì AMED là hình bình hành)

b) Ta có:

+) overrightarrow {NC} - overrightarrow {MC} = overrightarrow {NC} + overrightarrow {CM} = overrightarrow {NM}

+) overrightarrow {AC} - overrightarrow {BC} = overrightarrow {AC} + overrightarrow {CB} = overrightarrow {AB}

+) overrightarrow {AB} - overrightarrow {ME} = overrightarrow {AB} - overrightarrow {AD} = overrightarrow {AB} + overrightarrow {DA} = overrightarrow {DB}

c) Ta có:

overrightarrow {AM} + overrightarrow {AN} = overrightarrow {AM} + overrightarrow {MC} = overrightarrow {AC}

Áp dụng quy tắc hình bình hành vào hình bình hành ABCD ta có

overrightarrow {AB} + overrightarrow {AD} = overrightarrow {AC}

Từ đó suy raoverrightarrow {AM} + overrightarrow {AN} = overrightarrow {AB} + overrightarrow {AD}(đpcm)

Bài 5 trang 103 SGK Toán 10 CTST

Cho overrightarrow a ,overrightarrow b là hai vectơ khác vectơ overrightarrow 0 . Trong trường hợp nào thì đẳng thức sau đúng?

a) left| {overrightarrow a + overrightarrow b } right| = left| {overrightarrow a } right| + left| {overrightarrow b } right|;

b) left| {overrightarrow a + overrightarrow b } right| = left| {overrightarrow a - overrightarrow b } right| .

Gợi ý đáp án

a) left| {overrightarrow a + overrightarrow b } right| = left| {overrightarrow a } right| + left| {overrightarrow b } right| Leftrightarrow {left| {overrightarrow a + overrightarrow b } right|^2} = {left( {left| {overrightarrow a } right| + left| {overrightarrow b } right|} right)^2}

Leftrightarrow {left( {overrightarrow a + overrightarrow b } right)^2} = {left( {left| {overrightarrow a } right| + left| {overrightarrow b } right|} right)^2} Leftrightarrow {left( {overrightarrow a } right)^2} + 2overrightarrow a .overrightarrow b + {left( {overrightarrow b } right)^2}

= {left| {overrightarrow a } right|^2} + 2.left| {overrightarrow a } right|.left| {overrightarrow b } right| + {left| {overrightarrow b } right|^2}

Leftrightarrow {left| {overrightarrow a } right|^2} + 2overrightarrow a .overrightarrow b + {left| {overrightarrow b } right|^2} = {left| {overrightarrow a } right|^2} + 2.left| {overrightarrow a } right|.left| {overrightarrow b } right| + {left| {overrightarrow b } right|^2}

Leftrightarrow 2overrightarrow a .overrightarrow b = 2left| {overrightarrow a } right|.left| {overrightarrow b } right|

Leftrightarrow 2left| {overrightarrow a } right|.left| {overrightarrow b } right|cos left( {overrightarrow a ,overrightarrow b } right) = 2left| {overrightarrow a } right|.left| {overrightarrow b } right|

Leftrightarrow cos left( {overrightarrow a ,overrightarrow b } right) = 1 Leftrightarrow left( {overrightarrow a ,overrightarrow b } right) = 0^circ

Vậy left| {overrightarrow a + overrightarrow b } right| = left| {overrightarrow a } right| + left| {overrightarrow b } right| Leftrightarrow overrightarrow a , ,overrightarrow b cùng hướng.

b) left| {overrightarrow a + overrightarrow b } right| = left| {overrightarrow a - overrightarrow b } right| Leftrightarrow {left| {overrightarrow a + overrightarrow b } right|^2} = {left| {overrightarrow a - overrightarrow b } right|^2}

Leftrightarrow {left( {overrightarrow a + overrightarrow b } right)^2} = {left( {overrightarrow a - overrightarrow b } right)^2}

Leftrightarrow {left( {overrightarrow a } right)^2} + 2overrightarrow a .overrightarrow b + {left( {overrightarrow b } right)^2} = {left( {overrightarrow a } right)^2} - 2overrightarrow a .overrightarrow b + {left( {overrightarrow b } right)^2}

Leftrightarrow 2overrightarrow a .overrightarrow b = - 2overrightarrow a .overrightarrow b Leftrightarrow 4overrightarrow a .overrightarrow b = 0

Leftrightarrow overrightarrow a .overrightarrow b = 0 Leftrightarrow left( {overrightarrow a ,overrightarrow b } right) = 90^circ

Vậy left| {overrightarrow a + overrightarrow b } right| = left| {overrightarrow a - overrightarrow b } right| Leftrightarrow overrightarrow a ,overrightarrow b vuông góc với nhau.

Bài 6 trang 103 SGK Toán 10 CTST

Cho left| {overrightarrow a + overrightarrow b } right| = 0. So sánh độ dài, phương và hướng của hai vectơoverrightarrow aoverrightarrow b

Gợi ý đáp án

left| {overrightarrow a + overrightarrow b } right| = 0

overrightarrow a suy ra hai vectơ overrightarrow aoverrightarrow blà hai vecto đối nhau nên chúng cùng phương, ngược hướng và có độ dài bằng nhau.

Bài 7 trang 103 SGK Toán 10 CTST

Cho bốn điểm A, B, C, D. Chứng minh rằng overrightarrow {AB} = overrightarrow {CD} khi và chỉ khi trung điểm của hai đoạn thẳng ADBC trùng nhau.

Gợi ý đáp án

Với 4 điểm A, B, C, D ta có: overrightarrow {AB} = overrightarrow {CD} khi và chỉ khi tứ giác ABDC là hình bình hành

Theo tính chất của hình bình hành thì giao điểm của hai đường chéo là trung điểm của mỗi đường và ngược lại.

Nói cách khác: trung điểm của hai đoạn thẳng ADBC trùng nhau.

Vậy ta có điều phải chứng minh.

Bài 8 trang 103 SGK Toán 10 CTST

Cho tam giác ABC. Bên ngoài tam giác vẽ các hình bình hành ABIJ, BCPQ, CARS. Chứng minh rằng overrightarrow {RJ} + overrightarrow {IQ} + overrightarrow {PS} = overrightarrow 0 .

Gợi ý đáp án

overrightarrow {RJ} + overrightarrow {IQ} + overrightarrow {PS} = left( {overrightarrow {RA} + overrightarrow {AJ} } right) + left( {overrightarrow {IB} + overrightarrow {BQ} } right) + left( {overrightarrow {PC} + overrightarrow {CS} } right)

= left( {overrightarrow {RA} + overrightarrow {CS} } right) + left( {overrightarrow {AJ} + overrightarrow {IB} } right) + left( {overrightarrow {BQ} + overrightarrow {PC} } right) = overrightarrow 0 + overrightarrow 0 + overrightarrow 0 = overrightarrow 0 (đpcm)

Bài 9 trang 103 SGK Toán 10 CTST

Một chiếc máy bay được biết là đang bay về phía Bắc với tốc độ 45m/s, mặc dù vận tốc của nó so với mặt đất là 38 m/s theo hướng nghiêng một góc 20^circ về phía tây bắc (hình 2). Tính tốc độ của gió

Gợi ý đáp án

Từ giả thiết ta có:

+) Vectơ tương ứng với vận tốc máy bay là vectơ overrightarrow {{v_1}}

+) Vectơ tương ứng với vận tốc máy bay so với mặt đất là vectơ overrightarrow v

+) Vectơ tương ứng với vận tốc gió là vectơ overrightarrow {{v_2}}

Ta có : left| {overrightarrow {{v_1}} } right| = 45;left| {overrightarrow v } right| = 38;left( {overrightarrow {{v_1}} ,overrightarrow v } right) = 20^circ

Áp dụng định lý cosin ta có:

left| {overrightarrow {{v_2}} } right| = sqrt {{{left| {overrightarrow v } right|}^2} + {{left| {overrightarrow {{v_1}} } right|}^2} - 2left| {overrightarrow v } right|.left| {overrightarrow {{v_1}} } right|.cos left( {overrightarrow v ,overrightarrow {{v_1}} } right)}

= sqrt {{{38}^2} + {{45}^2} - 2.38.45.cos 20^circ } simeq 16 (m/s)

Vậy tốc độ của gió gần bằng 16 m/s

Trên đây TaiLieuViet.vn vừa gửi tới bạn đọc bài viết Bài tập cuối chương 5 CTST. Hi vọng qua đây bạn đọc có thêm tài liệu học tập nhé. Mời các bạn cùng tham khảo thêm tài liệu học tập môn Ngữ văn 10 CTST…