Giải Toán 8 Chân trời sáng tạo bài 3: Hằng đẳng thức đáng nhớ hướng dẫn giải chi tiết các câu hỏi trong SGK Toán 8 Chân trời sáng tạo, giúp các em dễ dàng trả lời câu hỏi trong bài, chuẩn bị bài trước khi đến lớp. Mời các em cùng tham khảo để nắm được nội dung bài học.

1. Bình phương của một tổng, một hiệu

Khám phá 1 trang 18 Toán 8 Tập 1 CTST

a) Ba bạn An, Mai và Bình viết biểu thức biểu thị tổng diện tích S của các phần tô màu trong Hình 1 như sau:

Toán 8 Chân trời sáng tạo bài 3 Hằng đẳng thức đáng nhớ

An: S = (a + b)2.

Mai: S = a2 + b2 + ab + ba.

Bình: S = a2 + 2ab + b2.

Kết quả của mỗi bạn có đúng không? Giải thích.

b) Thực hiện phép nhân và rút gọn đa thức của bạn An.

c) Bằng cách làm tương tự ở câu b), có thể biến đổi biểu thức (a − b)2 thành biểu thức nào?

Bài giải

a) Chiều dài và chiều rộng của hình 1 lần lượt là a + b, a + b

Tổng diện tích S của hình 1 là:

S hay S

Vậy cả ba bạn An, Mai và Bình đều nói đúng kết quả.

b) S

c) Ta có: {left( {a - b} right)^2} = left( {a - b} right)left( {a - b} right) = a.a - ab - ba + b.b = {a^2} - 2ab + {b^2}

Thực hành 1 trang 19 sgk Toán 8 tập 1 CTST:

Viết các biểu thức sau thành đa thức

a) (3x+1)^{2}

b) (4x+5y)^{2}

c) (5x-frac{1}{2})^{2}

d) (-x+2y^{2})^{2}

Bài giải

a) (3x+1)^{2}=(3x)^{2}+2 times 3x times 1 +1^{2}

=9x^{2}+6x+1

b) (4x+5y)^{2}

=16x^{2}+40xy+25y^{2}

c) (5x-frac{1}{2})^{2}

=25x^{2}-5x+frac{1}{4}

d) (-x+2y^{2})^{2}

a) a^{2}+10ab+25b^{2}

b) 1+9a^{2}-6a

Bài giải

a) a^{2}+10ab+25b^{2}=a^{2}+2 times a times 5b +(5b)^{2}

=(a+5b)^{2}

b) 1+9a^{2}-6a

Thực hành 3 trang 19 sgk Toán 8 tập 1 CTST: Tính nhanh

a) 52^{2}

b) 98^{2}

Bài giải

a) 52^{2}

=50^{2}+2times  50times  2+2^{2}=2500+200+4=2704

b) 98^{2}

=10000-400+4=9604

Vận dụng 1 trang 19 sgk Toán 8 tập 1 CTST:

a) Một mảnh vườn hình vuông có cạnh 10 m được mở rộng cả hai cạnh thêm x (m) như Hình 2a. Viết biểu thức (dạng đa thức thu gọn) biểu thị diện tích mảnh vườn sau khi mở rộng.

b) Một mảnh vườn hình vuông sau khi mở rộng mỗi cạnh 5 m thì được một mảnh vườn hình vuông với cạnh là x (m) như Hình 2b. Viết biểu thức (dạng đa thức thu gọn) biểu thị diện tích mảnh vườn trước khi mở rộng.

Giải Vận dụng 1 trang 19 sgk Toán 8 tập 1 Chân trời

Bài giải

a) Biểu thức biểu thị diện tích mảnh vườn sau khi mở rộng: (x+10)^{2}=x^{2}+20x+100

b) Biểu thức biểu thị diện tích mảnh vườn trước khi mở rộng: (x-5)^{2}=x^{2}-10x+25

2. Hiệu của hai bình phương

Khám phá 2 trang 20 Toán 8 Tập 1 CTST

a) Từ Hình 3a, người ta cắt ghép tạo thành Hình 3b. Viết hai biểu thức khác nhau, mỗi biểu thức biểu thị diện tích (phần tô màu) của một trong hai hình bên.

b) Thực hiện phép nhân và rút gọn đa thức, biến đổi biểu thức (a + b)(a – b) thành một đa thức thu gọn. Từ đó, có kết luận gì về diện tích của hai hình bên?

Toán 8 Chân trời sáng tạo bài 3 Hằng đẳng thức đáng nhớ

Bài giải

a) Ta đặt tên các điểm trên Hình 3 như hình vẽ dưới đây.

Toán 8 Chân trời sáng tạo bài 3 Hằng đẳng thức đáng nhớ

• Diện tích hình vuông ABCD là: a2.

Diện tích hình vuông EGHD là: b2.

Diện tích phần tô màu ở Hình 3a là: a2 – b2.

• Chiều dài của hình chữ nhật trong Hình 3b là: a + b.

Chiều rộng của hình chữ nhật trong Hình 3b là: a – b.

Diện tích hình chữ nhật (phần tô màu) trong Hình 3b là: (a + b)(a – b).

b) Ta có:

(a + b)(a – b) = a.(a – b) + b.(a – b) = a.a – ab + ba – b.b = a2 – b2.

Vậy diện tích của hai hình trong Hình 3a và Hình 3b trùng nhau.

Thực hành 4 trang 20 sgk Toán 8 tập 1 CTST:

Viết các biểu thức sau thành đa thức:

a) (4 - x)(4 + x)

b) (2y + 7z)(2y - 7z)

c) (x+2y^{2})(x-2y^{2})

Bài giải

a) (4 - x)(4 + x)

b) (2y + 7z)(2y - 7z)

c) (x+2y^{2})(x-2y^{2})

=x^{2}-4y^{4}

Thực hành 5 trang 20 sgk Toán 8 tập 1 CTST:

Tính nhanh

b) 87 x 93

c) 125^{2}-25^{2}

Bài giải

a) 82 x 78 = (80+2)(80-2)=80^{2}-2^{2}

=6400-4=6396

b) 87 x 93 = (90-3)(90+3)

=90^{2}-3^{2}=8100-9=8091

c) 125^{2}-25^{2}=(125-25)(125+25)=100 x 150 = 15000

Vận dụng 2 trang 20 sgk Toán 8 tập 1 CTST:

Giải đáp câu hỏi ở trang 18

Bài giải

65^{2}-35^{2}=(65-35)(65+35)= 30 x 100 = 3000

102 x 98 = (100+2)(100-2)=100^{2}-2^{2}=10000-4=9996

3. Lập phương của một tổng, một hiệu

Thực hành 6 trang 21 sgk Toán 8 tập 1 CTST:

Viết các biểu thức sau thành đa thức:

a) (x+2y)^{3}

b) (3y-1)^{3}

Bài giải

a) (x+2y)^{3}

=x^{3}+6x^{2}y+12xy^{2}+8y^{3}

b) (3y-1)^{3}

=27y^{3}-27y^{2}+9y-1

Vận dụng 3 trang 21 sgk Toán 8 tập 1 CTST:

Một thùng chứa dạng hình lập phương có độ dài cạnh bằng x (cm). Phần vỏ bao gồm nắp có độ dày 3 cm. Tính dung tích (sức chứa) của thùng, viết kết quả dưới dạng đa thức

.Giải Vận dụng 3 trang 21 sgk Toán 8 tập 1 Chân trời

Bài giải

Dung tích (sức chứa) của thùng là (x-3)^{3}=x^{3}-9x^{2}+27x-27

4. Tổng và hiệu của hai lập phương

Thực hành 7 trang 21 sgk Toán 8 tập 1 CTST: 

Viết các đa thức sau dưới dạng tích

a) 8y^{3}+1

b) y^{3}-8

Bài giải

a) 8y^{3}+1

=(2y+1)[(2y)^{2}-2y+1^{2}]=(2y+1)(4y^{2}-2y+1)

b) y^{3}-8

=(y-2)(y^{2}+2y+4)

Thực hành 8 trang 21 sgk Toán 8 tập 1 CTST:

Tính

a) (x+1)(x^{2}-x+1)

b) (2x-frac{1}{2})(4x^{2}+x+frac{1}{4})

Bài giải

a) (x+1)(x^{2}-x+1)

b) (2x-frac{1}{2})(4x^{2}+x+frac{1}{4})

=(2x)^{3}-(frac{1}{2})^{3}=8x^{3}-frac{1}{8}

Vận dụng 4 trang 22 sgk Toán 8 tập 1 CTST:

Từ một khối lập phương có cạnh bằng 2x + 1, ta cắt bỏ một khối lập phương có cạnh bằng x + 1 (xem Hình 5). Tính thể tích phần còn lại, viết kết quả dưới dạng đa thức.

Giải Vận dụng 4 trang 22 sgk Toán 8 tập 1 Chân trời

Bài giải

Thể tích phần còn lại:

(2x+1)^{3}-(x+1)^{3}=[2x+1-(x+1)][(2x+1)^{2}+(2x+1)(x+1)-(x+1)^{2}]

=(2x+1-x-1)(4x^{2}+4x+1+2x^{2}+2x+x+1-x^{2}-2x-1)

=x(5x^{2}+5x+1)=5x^{3}+5x^{2}+x

5. Giải bài tập trang 22 sgk Toán 8 tập 1 CTST

Bài tập 1 trang 22 sgk Toán 8 tập 1 CTST:

Viết các biểu thức sau thành đa thức:

a) (3x+4)^{2}

b) (5x-y)^{2}

c) (xy-frac{1}{2}y)^{2}

Bài giải

a) (3x+4)^{2}

b) (5x-y)^{2}

c) (xy-frac{1}{2}y)^{2}

Bài tập 2 trang 22 sgk Toán 8 tập 1 CTST:

Viết các biểu thức sau thành bình phương của một tổng hoặc một hiệu

a) x^{2}+2x+1

b) 9-24x+16x^{2}

c) 4x^{2}+frac{1}{4}+2x

Bài giải

a) x^{2}+2x+1

b) 9-24x+16x^{2}

c) 4x^{2}+frac{1}{4}+2x

=(2x+frac{1}{2})^{2}

Bài tập 3 trang 22 sgk Toán 8 tập 1 CTST:

Viết các biểu thức sau thành đa thức:

a) (3x - 5)(3x + 5)

b) (x - 2y)(x + 2y)

c) (-x-frac{1}{2}y)(-x+frac{1}{2}y)

Bài giải

a) (3x - 5)(3x + 5)

b) (x - 2y)(x + 2y)

c) (-x-frac{1}{2}y)(-x+frac{1}{2}y)

=x^{2}-frac{1}{4}y^{2}

Bài tập 4 trang 22 sgk Toán 8 tập 1 CTST:

a) Viết biểu thức tính diện tích của hình vuông có cạnh bằng 2x + 3 dưới dạng đa thức

b) Viết biểu thức tính thể tích của khối lập phương có cạnh bằng 3x – 2 dưới dạng đa thức

Bài giải

a) (2x+3)^{2}=4x^{2}+12x+9

b) (3x-2)^{3}=27x^{3}-54x^{2}+36x-8

Bài tập 5 trang 22 sgk Toán 8 tập 1 CTST:

Tính nhanh

a) 38 times  42

b) 102^{2}

c) 198^{2}

d) 75^{2}-25^{2}

Bài giải

a) 38 times  42

=40^{2}-2^{2}=1600-4=1598

b) 102^{2}

=10000+400+4=10404

c) 198^{2}

=40000-800+4=39204

d) 75^{2}-25^{2}

Bài tập 6 trang 22 sgk Toán 8 tập 1 CTST:

Viết các biểu thức sau thành đa thức:

a) (2x-3)^{3}

b) (a+3b)^{3}

c) (xy-1)^{3}

Bài giải

a) (2x-3)^{3}

=8x^{3}-36x^{2}+54x-27

b) (a+3b)^{3}

=a^{3}+9a^{2}b+27ab^{2}+27b^{3}

c) (xy-1)^{3}

=x^{3}y^{3}-3x^{2}y^{2}+3xy-1

Bài tập 7 trang 22 sgk Toán 8 tập 1 CTST: 

Viết các biểu thức sau thành đa thức

a) (a-5)(a^{2}+5a+25)

b) (x+2y)(x^{2}-2xy+4y^{2})

Bài giải

a) (a-5)(a^{2}+5a+25)

=a^{3}-5^{3}

b) (x+2y)(x^{2}-2xy+4y^{2})

=x^{3}+(2y)^{3}=x^{3}+8y^{3}

Bài tập 8 trang 22 sgk Toán 8 tập 1 CTST:

Viết các biểu thức sau thành đa thức:

a) (a-1)(a+1)(a^{2}+1)

b) (xy+1)^{2}-(xy-1)^{2}

Bài giải

a) (a-1)(a+1)(a^{2}+1)

=(a^{2})^{2}-1=a^{4}-1

b) (xy+1)^{2}-(xy-1)^{2}

=2(2xy)=4xy

Bài tập 9 trang 22 sgk Toán 8 tập 1 CTST:

a) Cho x + y = 12 và xy = 35. Tính (x-y)^{2}

b) Cho x – y = 8 và xy = 20. Tính (x+y)^{2}

c) Cho x + y = 5 và xy = 6. Tính x^{3}+y^{3}

d) Cho x – y = 3 và xy = 40. Tính x^{3}-y^{3}

Bài giải

a) (x-y)^{2}=x^{2}-2xy+y^{2}=(x^{2}+2xy+y^{2})-4xy

=(x+y)^{2}-4xy=12^{2}-4times  35=4

b) (x+y)^{2}=x^{2}+2xy+y^{2}=(x^{2}-2xy+y^{2})+4xy

=(x-y)^{2}+4xy=8^{2}+4 times 20=144

c) x^{3}+y^{3}=(x+y)(x^{2}-xy+y^{2})=(x+y)[(x^{2}+2xy+y^{2})-3xy]

=(x+y)[(x+y)^{2}-3xy]=5(5^{2}-3 times 6)=35

d) x^{3}-y^{3}=(x-y)(x^{2}+xy+y^{2})=(x-y)[(x^{2}-2xy+y^{2})+3xy]

=(x-y)[(x-y)^{2}+3xy]=3(3^{2}+3 times 40)=387

Bài tập 10 trang 22 sgk Toán 8 tập 1 CTST:

Cho hình hộp chữ nhật có chiều dài, chiều rộng, chiều cao đều bằng 5 cm. Thể tích của hình hộp chữ nhật sẽ tăng bao nhiêu nếu:

a) Chiều dài và chiều rộng tăng thêm a cm?

b) Chiều dài, chiều rộng, chiều cao đều tăng thêm a cm?

Bài giải

Thể tích hình hộp chữ nhật ban đầu là:5^{3}=125(cm^{3})

a) Thể tích hình hộp chữ nhật khi chiều dài và chiều rộng tăng thêm a cm là: 5(5+a)^{2}=5(25+10a+a^{2})=125+50a+5a^{2}(cm^{3})

Khi đó thể tích hình chữ nhật sẽ tăng thêm

125+50a+5a^{2}-125=50+5a^{2}(cm^{3})

b) Thể tích hình hộp chữ nhật khi chiều dài, chiều rộng, chiều cao đều tăng thêm a cm là: (5+a)^{3}=125+75a+15a^{2}+a^{3}(cm^{3})

Khi đó thể tích hình chữ nhật sẽ tăng thêm 125+75a+15a^{2}+a^{3}-125=75a+15a^{2}+a^{3}(cm^{3})

6. Trắc nghiệm Toán 8 CTST bài 3

Toán 8 Chân trời sáng tạo bài 3 Hằng đẳng thức đáng nhớBài tiếp theo: Toán 8 Bài 4: Phân tích đa thức thành nhân tử